Transition Matching: Scalable and Flexible Generative Modeling
- URL: http://arxiv.org/abs/2506.23589v1
- Date: Mon, 30 Jun 2025 07:51:58 GMT
- Title: Transition Matching: Scalable and Flexible Generative Modeling
- Authors: Neta Shaul, Uriel Singer, Itai Gat, Yaron Lipman,
- Abstract summary: This paper introduces Transition Matching (TM), a novel discrete-time, continuous-state generative paradigm that unifies and advances both diffusion/flow models and continuous AR generation.<n>TM decomposes complex generation tasks into simpler Markov transitions, allowing for expressive non-deterministic probability transition kernels and arbitrary non-continuous supervision processes.
- Score: 36.605030979361516
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion and flow matching models have significantly advanced media generation, yet their design space is well-explored, somewhat limiting further improvements. Concurrently, autoregressive (AR) models, particularly those generating continuous tokens, have emerged as a promising direction for unifying text and media generation. This paper introduces Transition Matching (TM), a novel discrete-time, continuous-state generative paradigm that unifies and advances both diffusion/flow models and continuous AR generation. TM decomposes complex generation tasks into simpler Markov transitions, allowing for expressive non-deterministic probability transition kernels and arbitrary non-continuous supervision processes, thereby unlocking new flexible design avenues. We explore these choices through three TM variants: (i) Difference Transition Matching (DTM), which generalizes flow matching to discrete-time by directly learning transition probabilities, yielding state-of-the-art image quality and text adherence as well as improved sampling efficiency. (ii) Autoregressive Transition Matching (ARTM) and (iii) Full History Transition Matching (FHTM) are partially and fully causal models, respectively, that generalize continuous AR methods. They achieve continuous causal AR generation quality comparable to non-causal approaches and potentially enable seamless integration with existing AR text generation techniques. Notably, FHTM is the first fully causal model to match or surpass the performance of flow-based methods on text-to-image task in continuous domains. We demonstrate these contributions through a rigorous large-scale comparison of TM variants and relevant baselines, maintaining a fixed architecture, training data, and hyperparameters.
Related papers
- Hybrid Autoregressive-Diffusion Model for Real-Time Streaming Sign Language Production [0.0]
We introduce a hybrid approach combining autoregressive and diffusion models to generate Sign Language Production (SLP) models.<n>To capture fine-grained body movements, we design a Multi-Scale Pose Representation module that separately extracts detailed features from distinct arttors.<n>We also introduce a Confidence-Aware Causal Attention mechanism that utilizes joint-level confidence scores to dynamically guide the pose generation process.
arXiv Detail & Related papers (2025-07-12T01:34:50Z) - Improving Progressive Generation with Decomposable Flow Matching [50.63174319509629]
Decomposable Flow Matching (DFM) is a simple and effective framework for the progressive generation of visual media.<n>On Imagenet-1k 512px, DFM achieves 35.2% improvements in FDD scores over the base architecture and 26.4% over the best-performing baseline.
arXiv Detail & Related papers (2025-06-24T17:58:02Z) - Solving Inverse Problems with FLAIR [59.02385492199431]
Flow-based latent generative models are able to generate images with remarkable quality, even enabling text-to-image generation.<n>We present FLAIR, a novel training free variational framework that leverages flow-based generative models as a prior for inverse problems.<n>Results on standard imaging benchmarks demonstrate that FLAIR consistently outperforms existing diffusion- and flow-based methods in terms of reconstruction quality and sample diversity.
arXiv Detail & Related papers (2025-06-03T09:29:47Z) - FUDOKI: Discrete Flow-based Unified Understanding and Generation via Kinetic-Optimal Velocities [76.46448367752944]
multimodal large language models (MLLMs) unify visual understanding and image generation within a single framework.<n>Most existing MLLMs rely on autore (AR) architectures, which impose inherent limitations on future development.<n>We introduce FUDOKI, a unified multimodal model purely based on discrete flow matching.
arXiv Detail & Related papers (2025-05-26T15:46:53Z) - Fast Autoregressive Models for Continuous Latent Generation [49.079819389916764]
Autoregressive models have demonstrated remarkable success in sequential data generation, particularly in NLP.<n>Recent work, the masked autoregressive model (MAR) bypasses quantization by modeling per-token distributions in continuous spaces using a diffusion head.<n>We propose Fast AutoRegressive model (FAR), a novel framework that replaces MAR's diffusion head with a lightweight shortcut head.
arXiv Detail & Related papers (2025-04-24T13:57:08Z) - FELLE: Autoregressive Speech Synthesis with Token-Wise Coarse-to-Fine Flow Matching [51.32059240975148]
FELLE is an autoregressive model that integrates language modeling with token-wise flow matching.<n>For each continuous-valued token, FELLE modifies the general prior distribution in flow matching by incorporating information from the previous step.<n>FELLE generates continuous-valued tokens hierarchically, conditioned on the language model's output.
arXiv Detail & Related papers (2025-02-16T13:54:32Z) - GRAMA: Adaptive Graph Autoregressive Moving Average Models [26.755971450887333]
We introduce GRAMA, a Graph Adaptive method based on a learnable Autoregressive Moving Average (ARMA) framework.<n>By transforming from static to sequential graph data, GRAMA enables efficient and flexible long-range information propagation.<n>We also establish theoretical connections between GRAMA and Selective SSMs, providing insights into its ability to capture long-range dependencies.
arXiv Detail & Related papers (2025-01-22T09:09:17Z) - RDPM: Solve Diffusion Probabilistic Models via Recurrent Token Prediction [17.005198258689035]
Diffusion Probabilistic Models (DPMs) have emerged as the de facto approach for high-fidelity image synthesis.<n>We introduce a novel generative framework, the Recurrent Diffusion Probabilistic Model (RDPM), which enhances the diffusion process through a recurrent token prediction mechanism.
arXiv Detail & Related papers (2024-12-24T12:28:19Z) - TS-HTFA: Advancing Time Series Forecasting via Hierarchical Text-Free Alignment with Large Language Models [14.411646409316624]
We introduce textbfHierarchical textbfText-textbfFree textbfAlignment (textbfTS-HTFA), a novel method for time-series forecasting.<n>We replace paired text data with adaptive virtual text based on QR decomposition word embeddings and learnable prompt.<n>Experiments on multiple time-series benchmarks demonstrate that HTFA achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-09-23T12:57:24Z) - Diffusion Glancing Transformer for Parallel Sequence to Sequence
Learning [52.72369034247396]
We propose the diffusion glancing transformer, which employs a modality diffusion process and residual glancing sampling.
DIFFGLAT achieves better generation accuracy while maintaining fast decoding speed compared with both autoregressive and non-autoregressive models.
arXiv Detail & Related papers (2022-12-20T13:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.