FUDOKI: Discrete Flow-based Unified Understanding and Generation via Kinetic-Optimal Velocities
- URL: http://arxiv.org/abs/2505.20147v1
- Date: Mon, 26 May 2025 15:46:53 GMT
- Title: FUDOKI: Discrete Flow-based Unified Understanding and Generation via Kinetic-Optimal Velocities
- Authors: Jin Wang, Yao Lai, Aoxue Li, Shifeng Zhang, Jiacheng Sun, Ning Kang, Chengyue Wu, Zhenguo Li, Ping Luo,
- Abstract summary: multimodal large language models (MLLMs) unify visual understanding and image generation within a single framework.<n>Most existing MLLMs rely on autore (AR) architectures, which impose inherent limitations on future development.<n>We introduce FUDOKI, a unified multimodal model purely based on discrete flow matching.
- Score: 76.46448367752944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid progress of large language models (LLMs) has catalyzed the emergence of multimodal large language models (MLLMs) that unify visual understanding and image generation within a single framework. However, most existing MLLMs rely on autoregressive (AR) architectures, which impose inherent limitations on future development, such as the raster-scan order in image generation and restricted reasoning abilities in causal context modeling. In this work, we challenge the dominance of AR-based approaches by introducing FUDOKI, a unified multimodal model purely based on discrete flow matching, as an alternative to conventional AR paradigms. By leveraging metric-induced probability paths with kinetic optimal velocities, our framework goes beyond the previous masking-based corruption process, enabling iterative refinement with self-correction capability and richer bidirectional context integration during generation. To mitigate the high cost of training from scratch, we initialize FUDOKI from pre-trained AR-based MLLMs and adaptively transition to the discrete flow matching paradigm. Experimental results show that FUDOKI achieves performance comparable to state-of-the-art AR-based MLLMs across both visual understanding and image generation tasks, highlighting its potential as a foundation for next-generation unified multimodal models. Furthermore, we show that applying test-time scaling techniques to FUDOKI yields significant performance gains, further underscoring its promise for future enhancement through reinforcement learning.
Related papers
- Muddit: Liberating Generation Beyond Text-to-Image with a Unified Discrete Diffusion Model [87.23753533733046]
We introduce Muddit, a unified discrete diffusion transformer that enables fast and parallel generation across both text and image modalities.<n>Unlike prior unified diffusion models trained from scratch, Muddit integrates strong visual priors from a pretrained text-to-image backbone with a lightweight text decoder.
arXiv Detail & Related papers (2025-05-29T16:15:48Z) - Mogao: An Omni Foundation Model for Interleaved Multi-Modal Generation [54.588082888166504]
We present Mogao, a unified framework that enables interleaved multi-modal generation through a causal approach.<n>Mogoo integrates a set of key technical improvements in architecture design, including a deep-fusion design, dual vision encoders, interleaved rotary position embeddings, and multi-modal classifier-free guidance.<n>Experiments show that Mogao achieves state-of-the-art performance in multi-modal understanding and text-to-image generation, but also excels in producing high-quality, coherent interleaved outputs.
arXiv Detail & Related papers (2025-05-08T17:58:57Z) - d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning [31.531278643184656]
Recent large language models (LLMs) have demonstrated strong reasoning capabilities that benefits from online reinforcement learning (RL)<n>We propose d1, a framework to adapt pre-trained dLLMs into reasoning models via a combination of supervised finetuning (SFT) and RL.<n>We find that d1 yields the best performance and significantly improves performance of a state-of-the-art dLLM.
arXiv Detail & Related papers (2025-04-16T16:08:45Z) - Scaling Laws for Native Multimodal Models [53.490942903659565]
We revisit the architectural design of native multimodal models and conduct an extensive scaling laws study.<n>Our investigation reveals no inherent advantage to late-fusion architectures over early-fusion ones.<n>We show that incorporating Mixture of Experts (MoEs) allows for models that learn modality-specific weights, significantly enhancing performance.
arXiv Detail & Related papers (2025-04-10T17:57:28Z) - CAFe: Unifying Representation and Generation with Contrastive-Autoregressive Finetuning [24.981279071712173]
We introduce CAFe, a contrastive-autoregressive fine-tuning framework that enhances LVLMs for both representation and generative tasks.<n>Our approach unifies these traditionally separate tasks, achieving state-of-the-art results in both multimodal retrieval and multimodal generative benchmarks.
arXiv Detail & Related papers (2025-03-25T17:57:17Z) - Will Pre-Training Ever End? A First Step Toward Next-Generation Foundation MLLMs via Self-Improving Systematic Cognition [86.21199607040147]
Self-Improving cognition (SIcog) is a self-learning framework for constructing next-generation foundation language models.<n>We introduce Chain-of-Description, a step-by-step visual understanding method, and integrate structured chain-of-thought (CoT) reasoning to support in-depth multimodal reasoning.<n>Extensive experiments demonstrate that SIcog produces next-generation foundation MLLMs with substantially improved multimodal cognition.
arXiv Detail & Related papers (2025-03-16T00:25:13Z) - SynerGen-VL: Towards Synergistic Image Understanding and Generation with Vision Experts and Token Folding [66.74446220401296]
We propose SynerGen-VL, a simple yet powerful encoder-free MLLM capable of both image understanding and generation.<n>We introduce the token folding mechanism and the vision-expert-based progressive alignment pretraining strategy, which effectively support high-resolution image understanding.<n>Our code and models shall be released.
arXiv Detail & Related papers (2024-12-12T18:59:26Z) - Normalizing Flows with Multi-Scale Autoregressive Priors [131.895570212956]
We introduce channel-wise dependencies in their latent space through multi-scale autoregressive priors (mAR)
Our mAR prior for models with split coupling flow layers (mAR-SCF) can better capture dependencies in complex multimodal data.
We show that mAR-SCF allows for improved image generation quality, with gains in FID and Inception scores compared to state-of-the-art flow-based models.
arXiv Detail & Related papers (2020-04-08T09:07:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.