論文の概要: SoK: Semantic Privacy in Large Language Models
- arxiv url: http://arxiv.org/abs/2506.23603v1
- Date: Mon, 30 Jun 2025 08:08:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.969152
- Title: SoK: Semantic Privacy in Large Language Models
- Title(参考訳): SoK: 大規模言語モデルにおけるセマンティックプライバシ
- Authors: Baihe Ma, Yanna Jiang, Xu Wang, Guangshen Yu, Qin Wang, Caijun Sun, Chen Li, Xuelei Qi, Ying He, Wei Ni, Ren Ping Liu,
- Abstract要約: 本稿では,大規模言語モデル(LLM)の入力処理,事前学習,微調整,アライメント段階におけるセマンティックプライバシリスクを分析するライフサイクル中心のフレームワークを提案する。
我々は、鍵攻撃ベクトルを分類し、差分プライバシー、埋め込み暗号化、エッジコンピューティング、未学習などの現在の防御がこれらの脅威にどのように対処しているかを評価する。
セマンティックリークの定量化、マルチモーダル入力の保護、生成品質との非識別性のバランス、プライバシー保護の透明性確保など、オープンな課題の概要をまとめて結論付けます。
- 参考スコア(独自算出の注目度): 24.948776037037476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Large Language Models (LLMs) are increasingly deployed in sensitive domains, traditional data privacy measures prove inadequate for protecting information that is implicit, contextual, or inferable - what we define as semantic privacy. This Systematization of Knowledge (SoK) introduces a lifecycle-centric framework to analyze how semantic privacy risks emerge across input processing, pretraining, fine-tuning, and alignment stages of LLMs. We categorize key attack vectors and assess how current defenses, such as differential privacy, embedding encryption, edge computing, and unlearning, address these threats. Our analysis reveals critical gaps in semantic-level protection, especially against contextual inference and latent representation leakage. We conclude by outlining open challenges, including quantifying semantic leakage, protecting multimodal inputs, balancing de-identification with generation quality, and ensuring transparency in privacy enforcement. This work aims to inform future research on designing robust, semantically aware privacy-preserving techniques for LLMs.
- Abstract(参考訳): 大きな言語モデル(LLM)は、機密性の高いドメインにますますデプロイされているため、従来のデータプライバシ対策は、暗黙的、文脈的、推測不可能な情報を保護するのに不十分であることを証明します。
このSoK(Systematization of Knowledge)はライフサイクル中心のフレームワークを導入し、LLMの入力処理、事前トレーニング、微調整、アライメント段階におけるセマンティックプライバシのリスクがどのように出現するかを分析する。
我々は、鍵攻撃ベクトルを分類し、差分プライバシー、埋め込み暗号化、エッジコンピューティング、未学習などの現在の防御がこれらの脅威にどのように対処しているかを評価する。
分析の結果,セマンティックレベルの保護,特に文脈推論と潜時表現リークに対する重要なギャップが明らかになった。
セマンティックリークの定量化、マルチモーダル入力の保護、生成品質との非識別性のバランス、プライバシー保護の透明性確保など、オープンな課題の概要をまとめて結論付けます。
本研究の目的は,LLMの堅牢でセマンティックに認識されたプライバシ保存技術の設計に関する今後の研究を知らせることである。
関連論文リスト
- Privacy in Fine-tuning Large Language Models: Attacks, Defenses, and Future Directions [11.338466798715906]
細調整された大規模言語モデル(LLM)は、様々な領域で最先端のパフォーマンスを達成することができる。
本稿では、微調整LDMに関連するプライバシー問題に関する包括的調査を行う。
メンバーシップ推論、データ抽出、バックドア攻撃など、さまざまなプライバシ攻撃に対する脆弱性を強調します。
論文 参考訳(メタデータ) (2024-12-21T06:41:29Z) - Privacy-Preserving Large Language Models: Mechanisms, Applications, and Future Directions [0.0]
本調査では,大規模言語モデルに適したプライバシ保護機構の展望について考察する。
メンバーシップ推論やモデル逆転攻撃といった重要なプライバシー問題に対処する上での有効性を検討する。
本稿では、最先端のアプローチと今後のトレンドを合成することによって、堅牢でプライバシーに配慮した大規模言語モデルを構築するための基盤を提供する。
論文 参考訳(メタデータ) (2024-12-09T00:24:09Z) - DePrompt: Desensitization and Evaluation of Personal Identifiable Information in Large Language Model Prompts [11.883785681042593]
DePromptは、プロンプトのための脱感作保護および有効性評価フレームワークである。
我々は、コンテキスト属性を統合し、プライバシタイプを定義し、高精度なPIIエンティティ識別を実現する。
私たちのフレームワークはプロンプトに適応可能で、テキストのユーザビリティに依存したシナリオに拡張できます。
論文 参考訳(メタデータ) (2024-08-16T02:38:25Z) - Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory [82.7042006247124]
私たちは、最も有能なAIモデルでさえ、人間がそれぞれ39%と57%の確率で、プライベートな情報を公開していることを示しています。
我々の研究は、推論と心の理論に基づいて、新しい推論時プライバシー保護アプローチを即時に探求する必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-10-27T04:15:30Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - Semantics-Preserved Distortion for Personal Privacy Protection in Information Management [65.08939490413037]
本稿では,意味的整合性を維持しつつテキストを歪ませる言語学的アプローチを提案する。
本稿では, 意味保存歪みの枠組みとして, 生成的アプローチと置換的アプローチの2つを提示する。
また、特定の医療情報管理シナリオにおけるプライバシ保護についても検討し、機密データの記憶を効果的に制限していることを示す。
論文 参考訳(メタデータ) (2022-01-04T04:01:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。