論文の概要: Revisiting Audio-Visual Segmentation with Vision-Centric Transformer
- arxiv url: http://arxiv.org/abs/2506.23623v1
- Date: Mon, 30 Jun 2025 08:40:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:53.978553
- Title: Revisiting Audio-Visual Segmentation with Vision-Centric Transformer
- Title(参考訳): 視覚中心変換器によるオーディオ・ビジュアル・セグメンテーションの再検討
- Authors: Shaofei Huang, Rui Ling, Tianrui Hui, Hongyu Li, Xu Zhou, Shifeng Zhang, Si Liu, Richang Hong, Meng Wang,
- Abstract要約: AVS (Audio-Visual) は、オーディオ信号に基づいて、映像フレームに音声を生成するオブジェクトを分割することを目的としている。
本稿では,視覚由来の問合せを利用して,対応する音声や視覚情報を反復的に取得する視覚中心変換フレームワークを提案する。
我々のフレームワークは,AVSBenchデータセットの3つのサブセット上で,最先端のパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 60.83798235788669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Audio-Visual Segmentation (AVS) aims to segment sound-producing objects in video frames based on the associated audio signal. Prevailing AVS methods typically adopt an audio-centric Transformer architecture, where object queries are derived from audio features. However, audio-centric Transformers suffer from two limitations: perception ambiguity caused by the mixed nature of audio, and weakened dense prediction ability due to visual detail loss. To address these limitations, we propose a new Vision-Centric Transformer (VCT) framework that leverages vision-derived queries to iteratively fetch corresponding audio and visual information, enabling queries to better distinguish between different sounding objects from mixed audio and accurately delineate their contours. Additionally, we also introduce a Prototype Prompted Query Generation (PPQG) module within our VCT framework to generate vision-derived queries that are both semantically aware and visually rich through audio prototype prompting and pixel context grouping, facilitating audio-visual information aggregation. Extensive experiments demonstrate that our VCT framework achieves new state-of-the-art performances on three subsets of the AVSBench dataset. The code is available at https://github.com/spyflying/VCT_AVS.
- Abstract(参考訳): オーディオ・ビジュアル・セグメンテーション (AVS) は、音声信号に基づいて映像フレームに音声を分割することを目的としている。
一般的なAVSメソッドは、典型的にはオーディオ中心のTransformerアーキテクチャを採用しており、オブジェクトクエリはオーディオ機能から派生している。
しかし、オーディオ中心のトランスフォーマーは、オーディオの混合性に起因する知覚のあいまいさと、視覚的ディテールの損失による密度予測能力の低下という2つの制限に悩まされている。
これらの制約に対処するために,視覚由来のクエリを利用して対応する音声および視覚情報を反復的に取得する新しい視覚中心変換器(VCT)フレームワークを提案する。
さらに,VCT フレームワーク内に Prototype Prompted Query Generation (PPQG) モジュールを導入し,音声プロトタイプのプロンプトと画素コンテキストのグルーピングにより,視覚由来のクエリを意味的に認識し,視覚的にリッチなクエリを生成する。
我々のVCTフレームワークは、AVSBenchデータセットの3つのサブセット上で、新しい最先端のパフォーマンスを実現する。
コードはhttps://github.com/spyflying/VCT_AVSで公開されている。
関連論文リスト
- AVS-Mamba: Exploring Temporal and Multi-modal Mamba for Audio-Visual Segmentation [62.682428307810525]
音声・視覚的セグメンテーションタスクに対処する選択状態空間モデルであるAVS-Mambaを導入する。
我々のフレームワークはビデオ理解とクロスモーダル学習の2つの重要な要素を取り入れている。
提案手法は, AVSBench-object と AVS-semantic のデータセット上で, 最新の結果を実現する。
論文 参考訳(メタデータ) (2025-01-14T03:20:20Z) - Separating the "Chirp" from the "Chat": Self-supervised Visual Grounding of Sound and Language [77.33458847943528]
DenseAVは、ビデオ視聴のみで高解像度、意味論的、音声視覚的に整合した特徴を学習する、新しいデュアルエンコーダ基盤アーキテクチャである。
そこで本研究では,DenseAVによる単語の「意味」と音の「位置」の特定が可能であることを明らかにした。
論文 参考訳(メタデータ) (2024-06-09T03:38:21Z) - AVSegFormer: Audio-Visual Segmentation with Transformer [42.24135756439358]
ビデオ中の音声オブジェクトの特定とセグメント化を目的とした,AVS(Audio-visual segmentation)タスクが導入された。
このタスクは、初めてオーディオ駆動のピクセルレベルのシーン理解を必要とし、重大な課題を提起する。
本稿では,トランスフォーマーアーキテクチャを活用するAVSegFormerを提案する。
論文 参考訳(メタデータ) (2023-07-03T16:37:10Z) - Visually-Guided Sound Source Separation with Audio-Visual Predictive
Coding [57.08832099075793]
視覚誘導音源分離は、視覚特徴抽出、マルチモーダル特徴融合、音響信号処理の3つの部分からなる。
本稿では,この課題をパラメータ調和とより効果的な方法で解決するために,AVPC(Audio-visual predictive coding)を提案する。
さらに、同一音源の2つの音声視覚表現を共予測することにより、AVPCのための効果的な自己教師型学習戦略を開発する。
論文 参考訳(メタデータ) (2023-06-19T03:10:57Z) - Annotation-free Audio-Visual Segmentation [46.42570058385209]
追加の手動アノテーションを使わずにオーディオ・ビジュアル・タスクのための人工データを生成する新しいパイプラインを提案する。
既存の画像セグメンテーションとオーディオデータセットを活用し、画像とマスクのペアをカテゴリラベルを用いて対応するオーディオサンプルとマッチングする。
また,SAMA-AVSの軽量モデルを導入し,AVSタスクに事前訓練されたセグメントの任意のモデル(SAM)を適応させる。
論文 参考訳(メタデータ) (2023-05-18T14:52:45Z) - TVLT: Textless Vision-Language Transformer [89.31422264408002]
テキストレス・ビジョン・ランゲージ変換器 (TVLT) では, 同種変換器ブロックが生の視覚・音声入力を行う。
TVLTはテキストベースの様々なマルチモーダルタスクに匹敵するパフォーマンスを実現している。
その結果,低レベルの視覚・音声信号から,コンパクトで効率的な視覚言語表現を学習できる可能性が示唆された。
論文 参考訳(メタデータ) (2022-09-28T15:08:03Z) - Audio-Visual Segmentation [47.10873917119006]
本稿では,AVS(Audio-visual segmentation)と呼ばれる新しい課題について検討する。
ゴールは、画像フレームの時点で音を生成するオブジェクトのピクセルレベルのマップを出力することである。
本研究では,可聴ビデオにおける音声オブジェクトに対する画素単位のアノテーションを提供するAVSBench(Audio-visual segmentation benchmark)を構築した。
論文 参考訳(メタデータ) (2022-07-11T17:50:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。