論文の概要: A New Perspective On AI Safety Through Control Theory Methodologies
- arxiv url: http://arxiv.org/abs/2506.23703v1
- Date: Mon, 30 Jun 2025 10:26:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:54.017238
- Title: A New Perspective On AI Safety Through Control Theory Methodologies
- Title(参考訳): 制御理論によるAI安全の新しい展望
- Authors: Lars Ullrich, Walter Zimmer, Ross Greer, Knut Graichen, Alois C. Knoll, Mohan Trivedi,
- Abstract要約: AIは新たなレベルの自律性を達成することを約束するが、安全保証の欠如によって妨げられている。
本稿では、基礎となるデータ生成プロセスの学際的解釈に基づいて、AI安全性に関する新たな視点を概説する。
新たな視点は、データコントロールとも呼ばれ、AIエンジニアリングを刺激し、既存の安全分析と保証を活用することを目的としている。
- 参考スコア(独自算出の注目度): 16.51699616065134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While artificial intelligence (AI) is advancing rapidly and mastering increasingly complex problems with astonishing performance, the safety assurance of such systems is a major concern. Particularly in the context of safety-critical, real-world cyber-physical systems, AI promises to achieve a new level of autonomy but is hampered by a lack of safety assurance. While data-driven control takes up recent developments in AI to improve control systems, control theory in general could be leveraged to improve AI safety. Therefore, this article outlines a new perspective on AI safety based on an interdisciplinary interpretation of the underlying data-generation process and the respective abstraction by AI systems in a system theory-inspired and system analysis-driven manner. In this context, the new perspective, also referred to as data control, aims to stimulate AI engineering to take advantage of existing safety analysis and assurance in an interdisciplinary way to drive the paradigm of data control. Following a top-down approach, a generic foundation for safety analysis and assurance is outlined at an abstract level that can be refined for specific AI systems and applications and is prepared for future innovation.
- Abstract(参考訳): 人工知能(AI)は急速に進歩し、驚くべき性能でますます複雑な問題を習得しているが、そのようなシステムの安全性の保証は大きな懸念事項である。
特に、安全クリティカルで現実世界のサイバー物理システムでは、AIは新たなレベルの自律性を達成することを約束するが、安全保証の欠如によって妨げられている。
データ駆動制御は、制御システムを改善するためにAIの最近の発展を支えているが、一般的に制御理論はAIの安全性を改善するために利用することができる。
そこで,本稿では,基本となるデータ生成プロセスの学際的解釈と,システム理論に着想を得たシステム分析駆動方式によるAIシステムによる各抽象化に基づく,AI安全性に関する新たな視点を概説する。
この文脈では、データ制御とも呼ばれる新しい視点は、AIエンジニアリングを刺激し、既存の安全分析と保証を、データ制御のパラダイムを駆動する学際的な方法で活用することを目的としている。
トップダウンアプローチに続いて、安全分析と保証のための一般的な基盤が抽象レベルで概説され、特定のAIシステムやアプリケーションのために洗練され、将来のイノベーションに備えられる。
関連論文リスト
- Decoding the Black Box: Integrating Moral Imagination with Technical AI Governance [0.0]
我々は、防衛、金融、医療、教育といった高度な領域に展開するAI技術を規制するために設計された包括的なフレームワークを開発する。
本手法では,厳密な技術的分析,定量的リスク評価,規範的評価を併用して,システム的脆弱性を暴露する。
論文 参考訳(メタデータ) (2025-03-09T03:11:32Z) - Landscape of AI safety concerns -- A methodology to support safety assurance for AI-based autonomous systems [0.0]
AIは重要な技術として登場し、さまざまなアプリケーションにまたがる進歩を加速している。
AIコンポーネントを組み込んだシステムの安全性を確保するという課題は、極めて重要である。
本稿では,AIシステムにおける安全保証事例作成を支援する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-12-18T16:38:16Z) - From Silos to Systems: Process-Oriented Hazard Analysis for AI Systems [2.226040060318401]
システム理論プロセス分析(STPA)をAIの操作と開発プロセスの解析に応用する。
我々は、機械学習アルゴリズムに依存したシステムと、3つのケーススタディに焦点をあてる。
私たちは、AIシステムに適したいくつかの適応があるにもかかわらず、anAを実行するための重要な概念とステップが容易に適用できることに気付きました。
論文 参考訳(メタデータ) (2024-10-29T20:43:18Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - System Safety and Artificial Intelligence [0.0]
社会的領域にまたがるAIの新たな応用には、新たなハザードが伴う。
システム安全の分野は、安全クリティカルシステムにおける事故や危害に対処してきた。
この章はシステムの安全性の先駆者であるナンシー・リーブソンに敬意を表しています。
論文 参考訳(メタデータ) (2022-02-18T16:37:54Z) - Safe AI -- How is this Possible? [0.45687771576879593]
従来の安全エンジニアリングは、決定論的で非進化的なシステムが、明確に定義されたコンテキストで運用されるものから、予測不可能な操作コンテキストで機能する自律的で学習可能なAIシステムへと、転換点に近づいている。
我々は、安全AIの基本的な課題を概説し、AIシステムの安全な振る舞いにおいて、不確実性を最小化し、信頼性を高め、許容レベルまで、厳格なエンジニアリングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-25T16:32:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。