Radioactive Watermarks in Diffusion and Autoregressive Image Generative Models
- URL: http://arxiv.org/abs/2506.23731v1
- Date: Mon, 30 Jun 2025 11:08:10 GMT
- Title: Radioactive Watermarks in Diffusion and Autoregressive Image Generative Models
- Authors: Michel Meintz, Jan DubiĆski, Franziska Boenisch, Adam Dziedzic,
- Abstract summary: We analyze the radioactivity of watermarks in images generated by diffusion models (DMs) and image autoregressive models (IARs)<n>We propose the first watermarking method tailored for IARs and with radioactivity in mind.
- Score: 4.303412065407284
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image generative models have become increasingly popular, but training them requires large datasets that are costly to collect and curate. To circumvent these costs, some parties may exploit existing models by using the generated images as training data for their own models. In general, watermarking is a valuable tool for detecting unauthorized use of generated images. However, when these images are used to train a new model, watermarking can only enable detection if the watermark persists through training and remains identifiable in the outputs of the newly trained model - a property known as radioactivity. We analyze the radioactivity of watermarks in images generated by diffusion models (DMs) and image autoregressive models (IARs). We find that existing watermarking methods for DMs fail to retain radioactivity, as watermarks are either erased during encoding into the latent space or lost in the noising-denoising process (during the training in the latent space). Meanwhile, despite IARs having recently surpassed DMs in image generation quality and efficiency, no radioactive watermarking methods have been proposed for them. To overcome this limitation, we propose the first watermarking method tailored for IARs and with radioactivity in mind - drawing inspiration from techniques in large language models (LLMs), which share IARs' autoregressive paradigm. Our extensive experimental evaluation highlights our method's effectiveness in preserving radioactivity within IARs, enabling robust provenance tracking, and preventing unauthorized use of their generated images.
Related papers
- Optimization-Free Universal Watermark Forgery with Regenerative Diffusion Models [50.73220224678009]
Watermarking can be used to verify the origin of synthetic images generated by artificial intelligence models.<n>Recent studies demonstrate the capability to forge watermarks from a target image onto cover images via adversarial techniques.<n>In this paper, we uncover a greater risk of an optimization-free and universal watermark forgery.<n>Our approach significantly broadens the scope of attacks, presenting a greater challenge to the security of current watermarking techniques.
arXiv Detail & Related papers (2025-06-06T12:08:02Z) - Can LLM Watermarks Robustly Prevent Unauthorized Knowledge Distillation? [75.99961894619986]
This paper investigates whether student models can acquire the capabilities of teacher models through knowledge distillation while avoiding watermark inheritance.<n>We propose two categories of watermark removal approaches: pre-distillation removal through untargeted and targeted training data paraphrasing (UP and TP), and post-distillation removal through inference-time watermark neutralization (WN)
arXiv Detail & Related papers (2025-02-17T09:34:19Z) - Exploiting Watermark-Based Defense Mechanisms in Text-to-Image Diffusion Models for Unauthorized Data Usage [14.985938758090763]
Text-to-image diffusion models, such as Stable Diffusion, have shown exceptional potential in generating high-quality images.<n>Recent studies highlight concerns over the use of unauthorized data in training these models, which may lead to intellectual property infringement or privacy violations.<n>We propose RATTAN, that leverages the diffusion process to conduct controlled image generation on the protected input.
arXiv Detail & Related papers (2024-11-22T22:28:19Z) - How to Trace Latent Generative Model Generated Images without Artificial Watermark? [88.04880564539836]
Concerns have arisen regarding potential misuse related to images generated by latent generative models.
We propose a latent inversion based method called LatentTracer to trace the generated images of the inspected model.
Our experiments show that our method can distinguish the images generated by the inspected model and other images with a high accuracy and efficiency.
arXiv Detail & Related papers (2024-05-22T05:33:47Z) - Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models [71.13610023354967]
Copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models.
We propose a diffusion model watermarking technique that is both performance-lossless and training-free.
arXiv Detail & Related papers (2024-04-07T13:30:10Z) - DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models [79.71665540122498]
We propose a method for detecting unauthorized data usage by planting the injected content into the protected dataset.
Specifically, we modify the protected images by adding unique contents on these images using stealthy image warping functions.
By analyzing whether the model has memorized the injected content, we can detect models that had illegally utilized the unauthorized data.
arXiv Detail & Related papers (2023-07-06T16:27:39Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
The intellectual property (IP) of Deep neural networks (DNNs) can be easily stolen'' by surrogate model attack.
We propose a new watermarking methodology, namely structure consistency'', based on which a new deep structure-aligned model watermarking algorithm is designed.
arXiv Detail & Related papers (2021-08-05T04:27:15Z) - Robust Black-box Watermarking for Deep NeuralNetwork using Inverse
Document Frequency [1.2502377311068757]
We propose a framework for watermarking a Deep Neural Networks (DNNs) model designed for a textual domain.
The proposed embedding procedure takes place in the model's training time, making the watermark verification stage straightforward.
The experimental results show that watermarked models have the same accuracy as the original ones.
arXiv Detail & Related papers (2021-03-09T17:56:04Z) - Removing Backdoor-Based Watermarks in Neural Networks with Limited Data [26.050649487499626]
Trading deep models is highly demanded and lucrative nowadays.
naive trading schemes typically involve potential risks related to copyright and trustworthiness issues.
We propose a novel backdoor-based watermark removal framework using limited data, dubbed WILD.
arXiv Detail & Related papers (2020-08-02T06:25:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.