Adaptive Out-of-Control Point Pattern Detection in Sequential Random Finite Set Observations
- URL: http://arxiv.org/abs/2506.23802v1
- Date: Mon, 30 Jun 2025 12:45:44 GMT
- Title: Adaptive Out-of-Control Point Pattern Detection in Sequential Random Finite Set Observations
- Authors: Konstantinos Bourazas, Savvas Papaioannou, Panayiotis Kolios,
- Abstract summary: We introduce a novel adaptive anomaly detection framework specifically designed for monitoring sequential random finite set (RFS) observations.<n>Our approach effectively distinguishes between In-Control data (normal) and Out-Of-Control data (anomalies) by detecting deviations from the expected statistical behavior of the process.
- Score: 4.022717732460524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we introduce a novel adaptive anomaly detection framework specifically designed for monitoring sequential random finite set (RFS) observations. Our approach effectively distinguishes between In-Control data (normal) and Out-Of-Control data (anomalies) by detecting deviations from the expected statistical behavior of the process. The primary contributions of this study include the development of an innovative RFS-based framework that not only learns the normal behavior of the data-generating process online but also dynamically adapts to behavioral shifts to accurately identify abnormal point patterns. To achieve this, we introduce a new class of RFS-based posterior distributions, named Power Discounting Posteriors (PD), which facilitate adaptation to systematic changes in data while enabling anomaly detection of point pattern data through a novel predictive posterior density function. The effectiveness of the proposed approach is demonstrated by extensive qualitative and quantitative simulation experiments.
Related papers
- Partially-Observable Sequential Change-Point Detection for Autocorrelated Data via Upper Confidence Region [12.645304808491309]
We propose a detection scheme called adaptive upper confidence region with state space model (AUCRSS) for sequential change point detection.
A partially-observable Kalman filter algorithm is developed for online inference of SSM, and accordingly, a change point detection scheme based on a generalized likelihood ratio test is analyzed.
arXiv Detail & Related papers (2024-03-30T02:32:53Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - An LSTM-Based Predictive Monitoring Method for Data with Time-varying
Variability [3.5246670856011035]
This paper explores the ability of the recurrent neural network structure to monitor processes.
It proposes a control chart based on long short-term memory (LSTM) prediction intervals for data with time-varying variability.
The proposed method is also applied to time series sensor data, which confirms that the proposed method is an effective technique for detecting abnormalities.
arXiv Detail & Related papers (2023-09-05T06:13:09Z) - Sequential Attention Source Identification Based on Feature
Representation [88.05527934953311]
This paper proposes a sequence-to-sequence based localization framework called Temporal-sequence based Graph Attention Source Identification (TGASI) based on an inductive learning idea.
It's worth mentioning that the inductive learning idea ensures that TGASI can detect the sources in new scenarios without knowing other prior knowledge.
arXiv Detail & Related papers (2023-06-28T03:00:28Z) - Beyond Individual Input for Deep Anomaly Detection on Tabular Data [0.0]
Anomaly detection is vital in many domains, such as finance, healthcare, and cybersecurity.
To the best of our knowledge, this is the first work to successfully combine feature-feature and sample-sample dependencies.
Our method achieves state-of-the-art performance, outperforming existing methods by 2.4% and 1.2% in terms of F1-score and AUROC, respectively.
arXiv Detail & Related papers (2023-05-24T13:13:26Z) - Adaptive novelty detection with false discovery rate guarantee [1.8249324194382757]
We propose a flexible method to control the false discovery rate (FDR) on detected novelties in finite samples.
Inspired by the multiple testing literature, we propose variants of AdaDetect that are adaptive to the proportion of nulls.
The methods are illustrated on synthetic datasets and real-world datasets, including an application in astrophysics.
arXiv Detail & Related papers (2022-08-13T17:14:55Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Deep Random Projection Outlyingness for Unsupervised Anomaly Detection [1.2249546377051437]
The original random projection outlyingness measure is modified and associated with a neural network to obtain an unsupervised anomaly detection method.
The performance of the proposed neural network approach is comparable to a state-of-the-art anomaly detection method.
arXiv Detail & Related papers (2021-06-08T14:13:43Z) - Dynamic Bayesian Approach for decision-making in Ego-Things [8.577234269009042]
This paper presents a novel approach to detect abnormalities in dynamic systems based on multisensory data and feature selection.
Growing neural gas (GNG) is employed for clustering multisensory data into a set of nodes.
Our method uses a Markov Jump particle filter (MJPF) for state estimation and abnormality detection.
arXiv Detail & Related papers (2020-10-28T11:38:51Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
We introduce Causal Structure Learning (CASTLE) regularization and propose to regularize a neural network by jointly learning the causal relationships between variables.
CASTLE efficiently reconstructs only the features in the causal DAG that have a causal neighbor, whereas reconstruction-based regularizers suboptimally reconstruct all input features.
arXiv Detail & Related papers (2020-09-28T09:49:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.