Exploring Privacy and Security as Drivers for Environmental Sustainability in Cloud-Based Office Solutions
- URL: http://arxiv.org/abs/2506.23866v3
- Date: Fri, 04 Jul 2025 13:50:03 GMT
- Title: Exploring Privacy and Security as Drivers for Environmental Sustainability in Cloud-Based Office Solutions
- Authors: Jason Kayembe, Iness Ben Guirat, Jan Tobias Mühlberg,
- Abstract summary: This paper explores the intersection of privacy, security, and environmental sustainability in cloud-based office solutions.<n>We hypothesise that privacy-focused services are typically more energy-efficient than those funded through data collection and advertising.<n>We apply our framework to three mainstream email services selected to reflect different privacy policies.
- Score: 1.3654846342364308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we explore the intersection of privacy, security, and environmental sustainability in cloud-based office solutions, focusing on quantifying user- and network-side energy use and associated carbon emissions. We hypothesise that privacy-focused services are typically more energy-efficient than those funded through data collection and advertising. To evaluate this, we propose a framework that systematically measures environmental costs based on energy usage and network data traffic during well-defined, automated usage scenarios. To test our hypothesis, we first analyse how underlying architectures and business models, such as monetisation through personalised advertising, contribute to the environmental footprint of these services. We then explore existing methodologies and tools for software environmental impact assessment. We apply our framework to three mainstream email services selected to reflect different privacy policies, from ad-supported tracking-intensive models to privacy-focused designs: Microsoft Outlook, Google Mail (Gmail), and Proton Mail. We extend this comparison to a self-hosted email solution, evaluated with and without end-to-end encryption. We show that the self-hosted solution, even with 14% of device energy and 15% of emissions overheads from PGP encryption, remains the most energy-efficient, saving up to 33% of emissions per session compared to Gmail. Among commercial providers, Proton Mail is the most efficient, saving up to 0.1 gCO2 e per session compared to Outlook, whose emissions can be further reduced by 2% through ad-blocking.
Related papers
- Measuring the Carbon Footprint of Cryptographic Privacy-Enhancing Technologies [0.7646713951724013]
We measure the energy consumption and carbon footprint increase induced by five cryptographic PETs (compared to their non-private equivalent)<n>Our findings reveal significant variability in carbon footprint increases, ranging from a twofold increase in HTTPS web browsing to a 100,000-fold increase in encrypted ML.<n>Our study provides essential data to help decision-makers assess privacy-carbon trade-offs in such applications.
arXiv Detail & Related papers (2025-08-06T16:07:29Z) - MAIZX: A Carbon-Aware Framework for Optimizing Cloud Computing Emissions [0.7127829790714169]
Cloud computing poses significant environmental challenges due to its high-energy consumption and carbon emissions.<n>Data centers account for 2-4% of global energy usage, and the ICT sector's share of electricity consumption is projected to reach 40% by 2040.<n>This study evaluates the MAIZX framework, designed to optimize cloud operations and reduce carbon footprint.
arXiv Detail & Related papers (2025-06-24T19:40:09Z) - PWC-MoE: Privacy-Aware Wireless Collaborative Mixture of Experts [59.5243730853157]
Large language models (LLMs) hosted on cloud servers alleviate the computational and storage burdens on local devices but raise privacy concerns.<n>Small language models (SLMs) running locally enhance privacy but suffer from limited performance on complex tasks.<n>We propose a privacy-aware wireless collaborative mixture of experts (PWC-MoE) framework to balance computational cost, performance, and privacy protection under bandwidth constraints.
arXiv Detail & Related papers (2025-05-13T16:27:07Z) - Exploring Privacy and Security as Drivers for Environmental Sustainability in Cloud-Based Office Solutions (Extended Abstract) [0.0]
This paper explores the intersection of privacy, cybersecurity, and environmental impacts in cloud-based office solutions.
We hypothesise that solutions that emphasise privacy and security are typically "greener" than solutions financed through data collection and advertising.
arXiv Detail & Related papers (2024-11-25T12:36:25Z) - Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework [47.11111145443189]
We introduce Enc2DB, a novel secure database system following a hybrid strategy on and openGauss.
We present a micro-benchmarking test and self-adaptive mode switch strategy that can choose the best execution path (cryptography or TEE) to answer a given query.
We also design and implement a ciphertext index compatible with native cost model and querys to accelerate query processing.
arXiv Detail & Related papers (2024-04-10T08:11:12Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - Intelligent edge-based recommender system for internet of energy
applications [2.1874189959020423]
This paper presents the full integration of a proposed energy efficiency framework into the Home-Assistant platform using an edge-based architecture.
End-users can visualize their consumption patterns as well as ambient environmental data using the Home-Assistant user interface.
More notably, explainable energy-saving recommendations are delivered to end-users in the form of notifications via the mobile application.
arXiv Detail & Related papers (2021-11-25T23:28:14Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z) - Privacy Protection of Grid Users Data with Blockchain and Adversarial
Machine Learning [0.8029049649310213]
Utilities around the world are reported to invest a total of around 30 billion over the next few years for installation of more than 300 million smart meters.
With full country wide deployment, there will be almost 1.3 billion smart meters in place.
All these perks associated with fine grained energy usage data collection threaten the privacy of users.
This research paper addresses privacy violation of consumers' energy usage data collected from smart meters.
arXiv Detail & Related papers (2021-01-15T21:54:55Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.