Auto-TA: Towards Scalable Automated Thematic Analysis (TA) via Multi-Agent Large Language Models with Reinforcement Learning
- URL: http://arxiv.org/abs/2506.23998v1
- Date: Mon, 30 Jun 2025 16:02:28 GMT
- Title: Auto-TA: Towards Scalable Automated Thematic Analysis (TA) via Multi-Agent Large Language Models with Reinforcement Learning
- Authors: Seungjun Yi, Joakim Nguyen, Huimin Xu, Terence Lim, Andrew Well, Mia Markey, Ying Ding,
- Abstract summary: Congenital heart disease (CHD) presents complex, lifelong challenges underrepresented in traditional clinical metrics.<n>We propose a fully automated large language model (LLM) pipeline that performs end-to-end thematic analysis on clinical narratives.
- Score: 3.3212706551453155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Congenital heart disease (CHD) presents complex, lifelong challenges often underrepresented in traditional clinical metrics. While unstructured narratives offer rich insights into patient and caregiver experiences, manual thematic analysis (TA) remains labor-intensive and unscalable. We propose a fully automated large language model (LLM) pipeline that performs end-to-end TA on clinical narratives, which eliminates the need for manual coding or full transcript review. Our system employs a novel multi-agent framework, where specialized LLM agents assume roles to enhance theme quality and alignment with human analysis. To further improve thematic relevance, we optionally integrate reinforcement learning from human feedback (RLHF). This supports scalable, patient-centered analysis of large qualitative datasets and allows LLMs to be fine-tuned for specific clinical contexts.
Related papers
- A Versatile Pathology Co-pilot via Reasoning Enhanced Multimodal Large Language Model [26.704101714550827]
We present SmartPath-R1, a versatile MLLM capable of simultaneously addressing both ROI-level and WSI-level tasks.<n>Our framework combines scale-dependent supervised fine-tuning and task-aware reinforcement fine-tuning, which circumvents the requirement for chain-of-thought supervision.
arXiv Detail & Related papers (2025-07-23T08:09:42Z) - TAMA: A Human-AI Collaborative Thematic Analysis Framework Using Multi-Agent LLMs for Clinical Interviews [54.35097932763878]
Thematic analysis (TA) is a widely used qualitative approach for uncovering latent meanings in unstructured text data.<n>Here, we propose TAMA: A Human-AI Collaborative Thematic Analysis framework using Multi-Agent LLMs for clinical interviews.<n>We demonstrate that TAMA outperforms existing LLM-assisted TA approaches, achieving higher thematic hit rate, coverage, and distinctiveness.
arXiv Detail & Related papers (2025-03-26T15:58:16Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - MedTsLLM: Leveraging LLMs for Multimodal Medical Time Series Analysis [6.30440420617113]
We introduce MedTsLLM, a general multimodal large language model (LLM) framework that integrates time series data and rich contextual information in the form of text to analyze physiological signals.
We perform three tasks with clinical relevance: semantic segmentation, boundary detection, and anomaly detection in time series.
Our model outperforms state-of-the-art baselines, including deep learning models, other LLMs, and clinical methods across multiple medical domains.
arXiv Detail & Related papers (2024-08-14T18:57:05Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
Large language models (LLMs) have shown promising capabilities in mimicking human-level language comprehension and reasoning.
This paper provides a comprehensive review on the applications and implications of LLMs in medicine.
arXiv Detail & Related papers (2023-11-03T13:51:36Z) - Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization [8.456700096020601]
Large language models (LLMs) have shown promise in natural language processing (NLP), but their effectiveness on a diverse range of clinical summarization tasks remains unproven.
In this study, we apply adaptation methods to eight LLMs, spanning four distinct clinical summarization tasks.
A clinical reader study with ten physicians evaluates summary, completeness, correctness, and conciseness; in a majority of cases, summaries from our best adapted LLMs are either equivalent (45%) or superior (36%) compared to summaries from medical experts.
arXiv Detail & Related papers (2023-09-14T05:15:01Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
We introduce CAPR, a rule-based self-supervision objective for training Transformer language models for domain-specific passage matching.
We apply our objective in four Transformer-based architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders.
We report that CAPR outperforms strong baselines in the retrieval of domain-specific passages and effectively generalizes across rule-based and human-labeled passages.
arXiv Detail & Related papers (2021-08-02T10:42:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.