論文の概要: ST-MTM: Masked Time Series Modeling with Seasonal-Trend Decomposition for Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2507.00013v1
- Date: Fri, 13 Jun 2025 04:06:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-07 02:47:44.378982
- Title: ST-MTM: Masked Time Series Modeling with Seasonal-Trend Decomposition for Time Series Forecasting
- Title(参考訳): ST-MTM:時系列予測のための季節傾向分解を用いたマスク時系列モデリング
- Authors: Hyunwoo Seo, Chiehyeon Lim,
- Abstract要約: 予測のための時間依存性をモデル化するために,仮設時系列モデリングが提案されている。
季節差分解を考慮したマスク付き時系列モデリングフレームワークST-MTMを提案する。
ST-MTMは、既存のマスキングモデリング、コントラスト学習、教師付き予測手法と比較して、一貫して優れた予測性能を達成する。
- 参考スコア(独自算出の注目度): 3.7182810519704095
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Forecasting complex time series is an important yet challenging problem that involves various industrial applications. Recently, masked time-series modeling has been proposed to effectively model temporal dependencies for forecasting by reconstructing masked segments from unmasked ones. However, since the semantic information in time series is involved in intricate temporal variations generated by multiple time series components, simply masking a raw time series ignores the inherent semantic structure, which may cause MTM to learn spurious temporal patterns present in the raw data. To capture distinct temporal semantics, we show that masked modeling techniques should address entangled patterns through a decomposition approach. Specifically, we propose ST-MTM, a masked time-series modeling framework with seasonal-trend decomposition, which includes a novel masking method for the seasonal-trend components that incorporates different temporal variations from each component. ST-MTM uses a period masking strategy for seasonal components to produce multiple masked seasonal series based on inherent multi-periodicity and a sub-series masking strategy for trend components to mask temporal regions that share similar variations. The proposed masking method presents an effective pre-training task for learning intricate temporal variations and dependencies. Additionally, ST-MTM introduces a contrastive learning task to support masked modeling by enhancing contextual consistency among multiple masked seasonal representations. Experimental results show that our proposed ST-MTM achieves consistently superior forecasting performance compared to existing masked modeling, contrastive learning, and supervised forecasting methods.
- Abstract(参考訳): 複雑な時系列を予測することは、様々な産業的応用を含む重要な問題であるが挑戦的な問題である。
近年,マスク付き時系列モデルが提案され,マスク付きセグメントを非マスク型セグメントから再構築することで,時間依存性の予測を効果的にモデル化している。
しかし、時系列中の意味情報は、複数の時系列成分によって生成される複雑な時間変動に関与しているため、生の時系列をマスクするだけで固有の意味構造が無視されるため、MTMは生データに存在する急激な時間的パターンを学習する可能性がある。
時間的セマンティクスを識別するためには、マスク付きモデリング手法が分解手法によって絡み合ったパターンに対処すべきであることを示す。
具体的には,ST-MTMを提案する。ST-MTMは,季節変化の異なる季節変化を含む季節変化成分のマスキング手法を含む,季節変化分解を伴うマスク付き時系列モデリングフレームワークである。
ST-MTMは、季節成分の周期マスキング戦略を用いて、固有の多周期性に基づく複数のマスマスキング季節系列と、同様のバリエーションを持つ時間領域をマスキングする傾向成分のサブシリーズマスキング戦略を用いる。
提案手法は、複雑な時間的変動と依存を学習するための効果的な事前学習課題を示す。
さらに、ST-MTMは、複数のマスキング季節表現間の文脈整合性を高めることで、マスキングモデリングをサポートするコントラスト学習タスクを導入している。
実験の結果,提案したST-MTMは,既存のマスキングモデルやコントラスト学習,教師付き予測手法と比較して,一貫して優れた予測性能が得られることがわかった。
関連論文リスト
- Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
本稿では,単一入出力プロジェクション層を用いたMoirai-MoEを紹介するとともに,多種多様な時系列パターンのモデリングを専門家の疎結合に委ねる。
39のデータセットに対する大規模な実験は、既存の基盤モデルよりも、分配シナリオとゼロショットシナリオの両方において、Moirai-MoEの優位性を実証している。
論文 参考訳(メタデータ) (2024-10-14T13:01:11Z) - MMFNet: Multi-Scale Frequency Masking Neural Network for Multivariate Time Series Forecasting [6.733646592789575]
長期時系列予測(LTSF)は、電力消費計画、財務予測、疾病の伝播分析など、多くの実世界の応用において重要である。
MMFNetは,マルチスケールマスク付き周波数分解手法を利用して,長期多変量予測を向上する新しいモデルである。
MMFNetは、時系列を様々なスケールの周波数セグメントに変換し、学習可能なマスクを用いて非関連成分を適応的にフィルタリングすることで、微細で中間的で粗い時間パターンをキャプチャする。
論文 参考訳(メタデータ) (2024-10-02T22:38:20Z) - TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting [19.88184356154215]
時系列予測は、交通計画や天気予報などのアプリケーションで広く使われている。
TimeMixerは、長期および短期の予測タスクにおいて、一貫した最先端のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2024-05-23T14:27:07Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - HiMTM: Hierarchical Multi-Scale Masked Time Series Modeling with Self-Distillation for Long-Term Forecasting [17.70984737213973]
HiMTMは長期予測のための自己蒸留を用いた階層型マルチスケールマスク時系列モデリングである。
HiMTMは,(1)階層型マルチスケールトランスフォーマー (HMT) と,2) エンコーダを特徴抽出へ向ける分離エンコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダ(DED)デコンダデコーダデコンダデコーダデコーダデコーダデコンダデコーダ(DED) の4つのキーコンポーネントを統合する。
7つの主流データセットの実験によると、HiMTMは最先端の自己教師とエンドツーエンドの学習手法を3.16-68.54%上回っている。
論文 参考訳(メタデータ) (2024-01-10T09:00:03Z) - A Multi-Scale Decomposition MLP-Mixer for Time Series Analysis [14.40202378972828]
そこで我々は,MSD-Mixerを提案する。MSD-Mixerは,各レイヤの入力時系列を明示的に分解し,表現することを学ぶマルチスケール分解ミクサーである。
我々は,MSD-Mixerが他の最先端のアルゴリズムよりも効率よく優れていることを示す。
論文 参考訳(メタデータ) (2023-10-18T13:39:07Z) - SimMTM: A Simple Pre-Training Framework for Masked Time-Series Modeling [82.69579113377192]
SimMTM は Masked Time-Series Modeling のための単純な事前トレーニングフレームワークである。
SimMTMは、多様体の外にある複数の隣人の重み付けによるマスク付き時間点の復元を行う。
SimMTMは、最も先進的な時系列事前学習法と比較して、最先端の微調整性能を実現する。
論文 参考訳(メタデータ) (2023-02-02T04:12:29Z) - Ti-MAE: Self-Supervised Masked Time Series Autoencoders [16.98069693152999]
本稿では,Ti-MAEという新しいフレームワークを提案する。
Ti-MAEは、埋め込み時系列データをランダムにマスクアウトし、オートエンコーダを学び、ポイントレベルでそれらを再構築する。
いくつかの公開実世界のデータセットの実験では、マスク付きオートエンコーディングのフレームワークが生データから直接強力な表現を学習できることが示されている。
論文 参考訳(メタデータ) (2023-01-21T03:20:23Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Model-Attentive Ensemble Learning for Sequence Modeling [86.4785354333566]
シーケンスモデリング(MAES)のためのモデル・アテンティブ・アンサンブル・ラーニングを提案する。
MAESは、異なるシーケンスダイナミクスの専門家を専門とし、予測を適応的に重み付けるために、注目ベースのゲーティングメカニズムを利用する時系列の専門家の混合物です。
MAESが時系列シフトを受けるデータセットの人気シーケンスモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2021-02-23T05:23:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。