Generating Heterogeneous Multi-dimensional Data : A Comparative Study
- URL: http://arxiv.org/abs/2507.00090v3
- Date: Tue, 29 Jul 2025 07:56:27 GMT
- Title: Generating Heterogeneous Multi-dimensional Data : A Comparative Study
- Authors: Michael Corbeau, Emmanuelle Claeys, Mathieu Serrurier, Pascale Zaraté,
- Abstract summary: Methods such as Random Sampling, Tabular Variational Autoencoders, standard Generative Adversarial Networks, Conditional Tabular Generative Adversarial Networks and Diffusion Probabilistic Models are examined.<n>To address this gap, an evaluation of synthetic data quality is conducted using a combination of domain-specific metrics tailored to the firefighting domain.
- Score: 3.4123736336071864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Allocation of personnel and material resources is highly sensible in the case of firefighter interventions. This allocation relies on simulations to experiment with various scenarios. The main objective of this allocation is the global optimization of the firefighters response. Data generation is then mandatory to study various scenarios In this study, we propose to compare different data generation methods. Methods such as Random Sampling, Tabular Variational Autoencoders, standard Generative Adversarial Networks, Conditional Tabular Generative Adversarial Networks and Diffusion Probabilistic Models are examined to ascertain their efficacy in capturing the intricacies of firefighter interventions. Traditional evaluation metrics often fall short in capturing the nuanced requirements of synthetic datasets for real-world scenarios. To address this gap, an evaluation of synthetic data quality is conducted using a combination of domain-specific metrics tailored to the firefighting domain and standard measures such as the Wasserstein distance. Domain-specific metrics include response time distribution, spatial-temporal distribution of interventions, and accidents representation. These metrics are designed to assess data variability, the preservation of fine and complex correlations and anomalies such as event with a very low occurrence, the conformity with the initial statistical distribution and the operational relevance of the synthetic data. The distribution has the particularity of being highly unbalanced, none of the variables following a Gaussian distribution, adding complexity to the data generation process.
Related papers
- Latent Noise Injection for Private and Statistically Aligned Synthetic Data Generation [7.240170769827935]
Synthetic data generation has become essential for scalable, privacy-preserving statistical analysis.<n>We propose a Latent Noise Injection method using Masked Autoregressive Flows (MAF)<n>Instead of directly sampling from the trained model, our method perturbs each data point in the latent space and maps it back to the data domain.
arXiv Detail & Related papers (2025-06-19T22:22:57Z) - Towards a Unified Theory for Semiparametric Data Fusion with Individual-Level Data [1.0650780147044159]
We address the goal of conducting inference about a smooth finite-dimensional parameter by utilizing individual-level data from various independent sources.<n>Recent advancements have led to the development of a comprehensive theory capable of handling scenarios where different data sources align with, possibly distinct subsets of, conditional distributions of a single factorization of the joint target distribution.<n>We extend the aforementioned comprehensive theory to allow for the fusion of individual-level data from sources aligned with conditional distributions that do not correspond to a single factorization of the target distribution.
arXiv Detail & Related papers (2024-09-16T04:10:44Z) - Quantifying Distribution Shifts and Uncertainties for Enhanced Model Robustness in Machine Learning Applications [0.0]
This study explores model adaptation and generalization by utilizing synthetic data.
We employ quantitative measures such as Kullback-Leibler divergence, Jensen-Shannon distance, and Mahalanobis distance to assess data similarity.
Our findings suggest that utilizing statistical measures, such as the Mahalanobis distance, to determine whether model predictions fall within the low-error "interpolation regime" or the high-error "extrapolation regime" provides a complementary method for assessing distribution shift and model uncertainty.
arXiv Detail & Related papers (2024-05-03T10:05:31Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Fully Embedded Time-Series Generative Adversarial Networks [0.0]
Generative Adversarial Networks (GANs) should produce synthetic data that fits the underlying distribution of the data being modeled.
For real valued time-series data, this implies the need to simultaneously capture the static distribution of the data, but also the full temporal distribution of the data for any potential time horizon.
In FETSGAN, entire sequences are translated directly to the generator's sampling space using a seq2seq style adversarial auto encoder (AAE)
arXiv Detail & Related papers (2023-08-30T03:14:02Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Statistically Optimal Generative Modeling with Maximum Deviation from the Empirical Distribution [2.1146241717926664]
We show that the Wasserstein GAN, constrained to left-invertible push-forward maps, generates distributions that avoid replication and significantly deviate from the empirical distribution.
Our most important contribution provides a finite-sample lower bound on the Wasserstein-1 distance between the generative distribution and the empirical one.
We also establish a finite-sample upper bound on the distance between the generative distribution and the true data-generating one.
arXiv Detail & Related papers (2023-07-31T06:11:57Z) - Characterization and Greedy Learning of Gaussian Structural Causal Models under Unknown Interventions [4.993565079216378]
We use a greedy algorithm called GnIES to recover the equivalence class of the data-generating model without knowledge of the intervention targets.<n>In addition, we develop a novel procedure to generate semi-synthetic data sets with known causal ground truth but distributions closely resembling those of a real data set of choice.
arXiv Detail & Related papers (2022-11-27T17:37:21Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - Which Invariance Should We Transfer? A Causal Minimax Learning Approach [18.71316951734806]
We present a comprehensive minimax analysis from a causal perspective.
We propose an efficient algorithm to search for the subset with minimal worst-case risk.
The effectiveness and efficiency of our methods are demonstrated on synthetic data and the diagnosis of Alzheimer's disease.
arXiv Detail & Related papers (2021-07-05T09:07:29Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
We consider distributed variational inequalities (VIs) on domains with the problem data that is heterogeneous (non-IID) and distributed across many devices.
We make a very general assumption on the computational network that covers the settings of fully decentralized calculations.
We theoretically analyze its convergence rate in the strongly-monotone, monotone, and non-monotone settings.
arXiv Detail & Related papers (2021-06-15T17:45:51Z) - Partially Conditioned Generative Adversarial Networks [75.08725392017698]
Generative Adversarial Networks (GANs) let one synthesise artificial datasets by implicitly modelling the underlying probability distribution of a real-world training dataset.
With the introduction of Conditional GANs and their variants, these methods were extended to generating samples conditioned on ancillary information available for each sample within the dataset.
In this work, we argue that standard Conditional GANs are not suitable for such a task and propose a new Adversarial Network architecture and training strategy.
arXiv Detail & Related papers (2020-07-06T15:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.