Statistically Optimal Generative Modeling with Maximum Deviation from the Empirical Distribution
- URL: http://arxiv.org/abs/2307.16422v2
- Date: Thu, 6 Jun 2024 14:00:36 GMT
- Title: Statistically Optimal Generative Modeling with Maximum Deviation from the Empirical Distribution
- Authors: Elen Vardanyan, Sona Hunanyan, Tigran Galstyan, Arshak Minasyan, Arnak Dalalyan,
- Abstract summary: We show that the Wasserstein GAN, constrained to left-invertible push-forward maps, generates distributions that avoid replication and significantly deviate from the empirical distribution.
Our most important contribution provides a finite-sample lower bound on the Wasserstein-1 distance between the generative distribution and the empirical one.
We also establish a finite-sample upper bound on the distance between the generative distribution and the true data-generating one.
- Score: 2.1146241717926664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the problem of generative modeling, aiming to simulate diverse examples from an unknown distribution based on observed examples. While recent studies have focused on quantifying the statistical precision of popular algorithms, there is a lack of mathematical evaluation regarding the non-replication of observed examples and the creativity of the generative model. We present theoretical insights into this aspect, demonstrating that the Wasserstein GAN, constrained to left-invertible push-forward maps, generates distributions that avoid replication and significantly deviate from the empirical distribution. Importantly, we show that left-invertibility achieves this without compromising the statistical optimality of the resulting generator. Our most important contribution provides a finite-sample lower bound on the Wasserstein-1 distance between the generative distribution and the empirical one. We also establish a finite-sample upper bound on the distance between the generative distribution and the true data-generating one. Both bounds are explicit and show the impact of key parameters such as sample size, dimensions of the ambient and latent spaces, noise level, and smoothness measured by the Lipschitz constant.
Related papers
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models [6.647819824559201]
We study the large-sample properties of a likelihood-based approach for estimating conditional deep generative models.
Our results lead to the convergence rate of a sieve maximum likelihood estimator for estimating the conditional distribution.
arXiv Detail & Related papers (2024-10-02T20:46:21Z) - Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory [87.00653989457834]
Conditional diffusion models serve as the foundation of modern image synthesis and find extensive application in fields like computational biology and reinforcement learning.
Despite the empirical success, theory of conditional diffusion models is largely missing.
This paper bridges the gap by presenting a sharp statistical theory of distribution estimation using conditional diffusion models.
arXiv Detail & Related papers (2024-03-18T17:08:24Z) - A Note on the Convergence of Denoising Diffusion Probabilistic Models [3.1767625261233046]
We derive a quantitative upper bound on the Wasserstein distance between the data-generating distribution and the distribution learned by a diffusion model.
Unlike previous works in this field, our result does not make assumptions on the learned score function.
arXiv Detail & Related papers (2023-12-10T20:29:58Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
We provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling.
We show that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates.
arXiv Detail & Related papers (2023-03-03T11:31:55Z) - Score-based Generative Modeling Secretly Minimizes the Wasserstein
Distance [14.846377138993642]
We show that score-based models also minimize the Wasserstein distance between them under suitable assumptions on the model.
Our proof is based on a novel application of the theory of optimal transport, which can be of independent interest to the society.
arXiv Detail & Related papers (2022-12-13T03:48:01Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Divergence Frontiers for Generative Models: Sample Complexity,
Quantization Level, and Frontier Integral [58.434753643798224]
Divergence frontiers have been proposed as an evaluation framework for generative models.
We establish non-asymptotic bounds on the sample complexity of the plug-in estimator of divergence frontiers.
We also augment the divergence frontier framework by investigating the statistical performance of smoothed distribution estimators.
arXiv Detail & Related papers (2021-06-15T06:26:25Z) - A likelihood approach to nonparametric estimation of a singular
distribution using deep generative models [4.329951775163721]
We investigate a likelihood approach to nonparametric estimation of a singular distribution using deep generative models.
We prove that a novel and effective solution exists by perturbing the data with an instance noise.
We also characterize the class of distributions that can be efficiently estimated via deep generative models.
arXiv Detail & Related papers (2021-05-09T23:13:58Z) - Generative Modeling with Denoising Auto-Encoders and Langevin Sampling [88.83704353627554]
We show that both DAE and DSM provide estimates of the score of the smoothed population density.
We then apply our results to the homotopy method of arXiv:1907.05600 and provide theoretical justification for its empirical success.
arXiv Detail & Related papers (2020-01-31T23:50:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.