論文の概要: Interpretable AI for Time-Series: Multi-Model Heatmap Fusion with Global Attention and NLP-Generated Explanations
- arxiv url: http://arxiv.org/abs/2507.00234v1
- Date: Mon, 30 Jun 2025 20:04:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:58.749057
- Title: Interpretable AI for Time-Series: Multi-Model Heatmap Fusion with Global Attention and NLP-Generated Explanations
- Title(参考訳): 時系列の解釈可能なAI:グローバルアテンション付きマルチモデルヒートマップ融合とNLP生成説明
- Authors: Jiztom Kavalakkatt Francis, Matthew J Darr,
- Abstract要約: 本稿では,ResNetが生成するヒートマップと,グローバルに重み付けされた入力サリエンシを備えた再構成された2次元変換器を統合することで,モデル解釈可能性を向上させる新しいフレームワークを提案する。
本手法は、勾配重み付きアクティベーションマップ(ResNet)とトランスフォーマーのアテンションロールアウトを統合可視化にマージし、空間的・時間的アライメントを実現する。
臨床(ECG不整脈検出)および産業データセットに関する実証的評価は,有意な改善を示した。
- 参考スコア(独自算出の注目度): 1.331812695405053
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a novel framework for enhancing model interpretability by integrating heatmaps produced separately by ResNet and a restructured 2D Transformer with globally weighted input saliency. We address the critical problem of spatial-temporal misalignment in existing interpretability methods, where convolutional networks fail to capture global context and Transformers lack localized precision - a limitation that impedes actionable insights in safety-critical domains like healthcare and industrial monitoring. Our method merges gradient-weighted activation maps (ResNet) and Transformer attention rollout into a unified visualization, achieving full spatial-temporal alignment while preserving real-time performance. Empirical evaluations on clinical (ECG arrhythmia detection) and industrial (energy consumption prediction) datasets demonstrate significant improvements: the hybrid framework achieves 94.1% accuracy (F1 0.93) on the PhysioNet dataset and reduces regression error to RMSE = 0.28 kWh (R2 = 0.95) on the UCI Energy Appliance dataset-outperforming standalone ResNet, Transformer, and InceptionTime baselines by 3.8-12.4%. An NLP module translates fused heatmaps into domain-specific narratives (e.g., "Elevated ST-segment between 2-4 seconds suggests myocardial ischemia"), validated via BLEU-4 (0.586) and ROUGE-L (0.650) scores. By formalizing interpretability as causal fidelity and spatial-temporal alignment, our approach bridges the gap between technical outputs and stakeholder understanding, offering a scalable solution for transparent, time-aware decision-making.
- Abstract(参考訳): 本稿では,ResNetと再構成された2Dトランスフォーマをグローバルに重み付けした入力サリエンシで統合することで,モデル解釈可能性を向上させる新しいフレームワークを提案する。
既存の解釈可能性手法では、畳み込みネットワークがグローバルなコンテキストを捉えず、トランスフォーマーは局所的な精度を欠いている。
提案手法は,勾配重み付きアクティベーションマップ(ResNet)とトランスフォーマーアテンションロールアウトを統合可視化にマージし,リアルタイム性能を維持しながら空間的・時間的アライメントを実現する。
ハイブリッドフレームワークは、PhyloNetデータセット上で94.1%の精度(F1 0.93)を達成し、UCI Energy Applianceデータセット上での回帰誤差をRMSE = 0.28 kWh (R2 = 0.95)に低減し、スタンドアロンのResNet、Transformer、InceptionTimeベースラインを3.8-12.4%削減する。
NLPモジュールは融合熱マップをドメイン固有の物語(例:「2-4秒間のST上昇は心筋虚血を示唆する」)に変換し、BLEU-4(0.586)とROUGE-L(0.650)スコアで検証する。
解釈可能性を因果的忠実性と時空間的整合性として定式化することにより、当社のアプローチは、技術的アウトプットとステークホルダ理解のギャップを埋め、透明性と時間的な意思決定のためのスケーラブルなソリューションを提供する。
関連論文リスト
- ReconMOST: Multi-Layer Sea Temperature Reconstruction with Observations-Guided Diffusion [48.540756751934836]
ReconMOSTは多層水温再構築のためのデータ駆動誘導拡散モデルフレームワークである。
提案手法はMLベースのSST再構成をグローバルな多層設定に拡張し,92.5%以上の欠落データを処理する。
論文 参考訳(メタデータ) (2025-06-12T06:27:22Z) - Graph-Based Fault Diagnosis for Rotating Machinery: Adaptive Segmentation and Structural Feature Integration [0.0]
本稿では,回転機械における頑健かつ解釈可能なマルチクラス故障診断のためのグラフベースフレームワークを提案する。
エントロピー最適化信号セグメンテーション、時間周波数特徴抽出、グラフ理論モデリングを統合し、振動信号を構造化表現に変換する。
提案手法は,2つのベンチマークデータセットで評価した場合,高い診断精度を実現する。
論文 参考訳(メタデータ) (2025-04-29T13:34:52Z) - Memory-efficient Low-latency Remote Photoplethysmography through Temporal-Spatial State Space Duality [15.714133129768323]
ME-rは時間空間空間双対性に基づくメモリ効率のアルゴリズムである。
最小の計算オーバーヘッドを維持しながら、顔フレーム間の微妙な周期的な変動を効率的に捉える。
我々のソリューションは3.6MBのメモリ使用率と9.46msのレイテンシでリアルタイムの推論を可能にする。
論文 参考訳(メタデータ) (2025-04-02T14:34:04Z) - An Interpretable Implicit-Based Approach for Modeling Local Spatial Effects: A Case Study of Global Gross Primary Productivity [9.352810748734157]
地球科学では、観測されていない要因は非定常分布を示し、特徴と対象の関係が空間的不均一性を示す。
地理的機械学習タスクでは、従来の統計学習手法は空間的不均一性を捉えるのに苦労することが多い。
我々は、深層ニューラルネットワークを用いた空間差と並行して、異なる場所で共通する特徴を同時にモデル化する、新しい視点を提案する。
論文 参考訳(メタデータ) (2025-02-10T05:44:54Z) - CARE Transformer: Mobile-Friendly Linear Visual Transformer via Decoupled Dual Interaction [77.8576094863446]
本稿では,新しいdetextbfCoupled dutextbfAl-interactive lineatextbfR atttextbfEntion (CARE) 機構を提案する。
まず,非対称な特徴分離戦略を提案し,非対称的に学習プロセスを局所帰納バイアスと長距離依存に分解する。
分離学習方式を採用し,特徴間の相補性を完全に活用することにより,高い効率性と精度を両立させることができる。
論文 参考訳(メタデータ) (2024-11-25T07:56:13Z) - Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting [16.782154479264126]
時間的要因間の複雑な相互作用により、バックボーン・時間的トラフィックフローを予測することが課題となる。
既存のアプローチでは、これらの次元を分離し、重要な相互依存を無視している。
本稿では,空間的および時間的依存関係の両方をキャプチャする統合フレームワークであるSanonymous-Temporal Unitized Unitized Cell (ASTUC)を紹介する。
論文 参考訳(メタデータ) (2024-11-14T07:34:31Z) - Upscaling Global Hourly GPP with Temporal Fusion Transformer (TFT) [0.0]
グロース・プライマリ・生産性は気候変動のイニシアチブを評価するのに不可欠である。
推定値は現在、わずかに分散した渦状共分散塔の場所からのみ入手可能である。
本研究では、TFT(Temporal Fusion Transformer)を用いた新しいアップスケーリングソリューションについて検討した。
論文 参考訳(メタデータ) (2023-06-23T23:29:05Z) - Global-to-Local Modeling for Video-based 3D Human Pose and Shape
Estimation [53.04781510348416]
フレーム内精度とフレーム間スムーズさにより,映像に基づく3次元人間のポーズと形状推定を評価する。
エンドツーエンドフレームワークGLoT(Global-to-Local Transformer)における長期的・短期的相関のモデル化を構造的に分離することを提案する。
我々のGLoTは、一般的なベンチマーク(3DPW、MPI-INF-3DHP、Human3.6M)において、最も低いモデルパラメータを持つ従来の最先端の手法を上回る。
論文 参考訳(メタデータ) (2023-03-26T14:57:49Z) - Inertial Hallucinations -- When Wearable Inertial Devices Start Seeing
Things [82.15959827765325]
環境支援型生活(AAL)のためのマルチモーダルセンサフュージョンの新しいアプローチを提案する。
我々は、標準マルチモーダルアプローチの2つの大きな欠点、限られた範囲のカバレッジ、信頼性の低下に対処する。
我々の新しいフレームワークは、三重項学習によるモダリティ幻覚の概念を融合させ、異なるモダリティを持つモデルを訓練し、推論時に欠落したセンサーに対処する。
論文 参考訳(メタデータ) (2022-07-14T10:04:18Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
デバイス間の限られた通信資源、帯域幅とエネルギー、およびデータ不均一性は、連邦学習(FL)の主要なボトルネックである
まず、部分モデルアグリゲーション(PMA)を用いた新しいFLフレームワークを考案する。
提案されたPMA-FLは、2つの典型的な異種データセットにおいて2.72%と11.6%の精度を改善する。
論文 参考訳(メタデータ) (2022-04-20T19:09:52Z) - Speaker Representation Learning using Global Context Guided Channel and
Time-Frequency Transformations [67.18006078950337]
グローバルな文脈情報を用いて、重要なチャネルを強化し、有意義な時間周波数位置を再検討する。
提案されたモジュールは、人気のあるResNetベースのモデルとともに、VoxCeleb1データセットで評価される。
論文 参考訳(メタデータ) (2020-09-02T01:07:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。