Who Should I Listen To? Adaptive Collaboration in Personalized Federated Learning
- URL: http://arxiv.org/abs/2507.00259v2
- Date: Wed, 02 Jul 2025 10:26:16 GMT
- Title: Who Should I Listen To? Adaptive Collaboration in Personalized Federated Learning
- Authors: Amr Abourayya, Jens Kleesiek, Bharat Rao, Michael Kamp,
- Abstract summary: We propose an approach based on adaptive collaboration, where clients decide adaptively not only how much to rely on others, but also whom to trust.<n>We instantiate this principle in FEDMOSAIC, a federated co-training method in which clients exchange predictions over a shared unlabeled dataset.<n>Our results demonstrate the potential of data-aware collaboration for robust and effective personalization.
- Score: 6.427792270209119
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data heterogeneity is a central challenge in federated learning, and personalized federated learning (PFL) aims to address it by tailoring models to each client's distribution. Yet many PFL methods fail to outperform local or centralized baselines, suggesting a mismatch between the collaboration they enforce and the structure of the data. We propose an approach based on adaptive collaboration, where clients decide adaptively not only how much to rely on others, but also whom to trust at the level of individual examples. We instantiate this principle in FEDMOSAIC, a federated co-training method in which clients exchange predictions over a shared unlabeled dataset. This enables fine-grained trust decisions that are difficult to achieve with parameter sharing alone. Each client adjusts its loss weighting based on the agreement between private and public data, and contributes to global pseudo-labels in proportion to its estimated per-example confidence. Empirically, FEDMOSAIC improves upon state-of-the-art PFL methods across diverse non-IID settings, and we provide convergence guarantees under standard assumptions. Our results demonstrate the potential of data-aware collaboration for robust and effective personalization.
Related papers
- Not All Clients Are Equal: Personalized Federated Learning on Heterogeneous Multi-Modal Clients [52.14230635007546]
Foundation models have shown remarkable capabilities across diverse multi-modal tasks, but their centralized training raises privacy concerns and induces high transmission costs.<n>For the growing demand for personalizing AI models for different user purposes, personalized federated learning (PFL) has emerged.<n>PFL allows each client to leverage the knowledge of other clients for further adaptation to individual user preferences, again without the need to share data.
arXiv Detail & Related papers (2025-05-20T09:17:07Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.<n>We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - Learn What You Need in Personalized Federated Learning [53.83081622573734]
$textitLearn2pFed$ is a novel algorithm-unrolling-based personalized federated learning framework.
We show that $textitLearn2pFed$ significantly outperforms previous personalized federated learning methods.
arXiv Detail & Related papers (2024-01-16T12:45:15Z) - Personalized Federated Learning with Attention-based Client Selection [57.71009302168411]
We propose FedACS, a new PFL algorithm with an Attention-based Client Selection mechanism.
FedACS integrates an attention mechanism to enhance collaboration among clients with similar data distributions.
Experiments on CIFAR10 and FMNIST validate FedACS's superiority.
arXiv Detail & Related papers (2023-12-23T03:31:46Z) - Learning to Specialize: Joint Gating-Expert Training for Adaptive MoEs in Decentralized Settings [41.98633628526484]
Mixture-of-Experts (MoEs) achieve scalability by dynamically activating subsets of their components.<n>Motivated by inference costs and data heterogeneity, we study how joint training of gating functions and experts can allocate domain-specific expertise.
arXiv Detail & Related papers (2023-06-14T15:47:52Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Adaptive Federated Learning via New Entropy Approach [14.595709494370372]
Federated Learning (FL) has emerged as a prominent distributed machine learning framework.
In this paper, we propose an adaptive FEDerated learning algorithm based on ENTropy theory (FedEnt) to alleviate the parameter deviation among heterogeneous clients.
arXiv Detail & Related papers (2023-03-27T07:57:04Z) - Personalized Privacy-Preserving Framework for Cross-Silo Federated
Learning [0.0]
Federated learning (FL) is a promising decentralized deep learning (DL) framework that enables DL-based approaches trained collaboratively across clients without sharing private data.
In this paper, we propose a novel framework, namely Personalized Privacy-Preserving Federated Learning (PPPFL)
Our proposed framework outperforms multiple FL baselines on different datasets, including MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100.
arXiv Detail & Related papers (2023-02-22T07:24:08Z) - PGFed: Personalize Each Client's Global Objective for Federated Learning [7.810284483002312]
We propose a novel personalized FL framework that enables each client to personalize its own global objective.
To avoid massive (O(N2)) communication overhead and potential privacy leakage, each client's risk is estimated through a first-order approximation for other clients' adaptive risk aggregation.
Our experiments on four datasets under different federated settings show consistent improvements of PGFed over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-12-02T21:16:39Z) - PFA: Privacy-preserving Federated Adaptation for Effective Model
Personalization [6.66389628571674]
Federated learning (FL) has become a prevalent distributed machine learning paradigm with improved privacy.
This paper introduces a new concept called federated adaptation, targeting at adapting the trained model in a federated manner to achieve better personalization results.
We propose PFA, a framework to accomplish Privacy-preserving Federated Adaptation.
arXiv Detail & Related papers (2021-03-02T08:07:34Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.