Reconfiguring Digital Accountability: AI-Powered Innovations and Transnational Governance in a Postnational Accounting Context
- URL: http://arxiv.org/abs/2507.00288v1
- Date: Mon, 30 Jun 2025 21:56:37 GMT
- Title: Reconfiguring Digital Accountability: AI-Powered Innovations and Transnational Governance in a Postnational Accounting Context
- Authors: Claire Li, David Freeborn,
- Abstract summary: We argue that accountability is co-constructed within global socio-technical networks.<n>We propose two strategies to foster responsible, legitimate, and globally accepted AI adoption in the accounting domain.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores how AI-powered digital innovations are reshaping organisational accountability in a transnational governance context. As AI systems increasingly mediate decision-making in domains such as auditing and financial reporting, traditional mechanisms of accountability, based on control, transparency, and auditability, are being destabilised. We integrate the Technology Acceptance Model (TAM), Actor-Network Theory (ANT), and institutional theory to examine how organisations adopt AI technologies in response to regulatory, ethical, and cultural pressures that transcend national boundaries. We argue that accountability is co-constructed within global socio-technical networks, shaped not only by user perceptions but also by governance logics and normative expectations. Extending TAM, we incorporate compliance and legitimacy as key factors in perceived usefulness and usability. Drawing on ANT, we reconceptualise accountability as a relational and emergent property of networked assemblages. We propose two organisational strategies including internal governance reconfiguration and external actor-network engagement to foster responsible, legitimate, and globally accepted AI adoption in the accounting domain.
Related papers
- Enterprise Architecture as a Dynamic Capability for Scalable and Sustainable Generative AI adoption: Bridging Innovation and Governance in Large Organisations [55.2480439325792]
Generative Artificial Intelligence is a powerful new technology with the potential to boost innovation and reshape governance in many industries.<n>However, organisations face major challenges in scaling GenAI, including technology complexity, governance gaps and resource misalignments.<n>This study explores how Enterprise Architecture Management can meet the complex requirements of GenAI adoption within large enterprises.
arXiv Detail & Related papers (2025-05-09T07:41:33Z) - Exploring AI-powered Digital Innovations from A Transnational Governance Perspective: Implications for Market Acceptance and Digital Accountability Accountability [0.0]
This study explores the application of the Technology Acceptance Model (TAM) to AI-powered digital innovations within a transnational governance framework.<n>By integrating Latourian actor-network theory (ANT), this study examines how institutional motivations, regulatory compliance, and ethical and cultural acceptance drive organisations to develop and adopt AI innovations.
arXiv Detail & Related papers (2025-04-28T19:31:01Z) - The Role of Legal Frameworks in Shaping Ethical Artificial Intelligence Use in Corporate Governance [0.0]
This article examines the evolving role of legal frameworks in shaping ethical artificial intelligence (AI) use in corporate governance.<n>It explores key legal and regulatory approaches aimed at promoting transparency, accountability, and fairness in corporate AI applications.
arXiv Detail & Related papers (2025-03-17T14:21:58Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
This paper investigates the interplay between AI developers, regulators, users, and the media in fostering trustworthy AI systems.<n>Using evolutionary game theory and large language models (LLMs), we model the strategic interactions among these actors under different regulatory regimes.
arXiv Detail & Related papers (2025-03-12T21:39:38Z) - AI and the Transformation of Accountability and Discretion in Urban Governance [1.9152655229960793]
The study synthesizes insights to propose guiding principles for responsible AI integration in decision-making processes.<n>The analysis argues that AI does not simply restrict or enhance discretion but redistributes it across institutional levels.<n>It may simultaneously strengthen managerial oversight, enhance decision-making consistency, and improve operational efficiency.
arXiv Detail & Related papers (2025-02-18T18:11:39Z) - Decentralized Governance of Autonomous AI Agents [0.0]
ETHOS is a decentralized governance (DeGov) model leveraging Web3 technologies, including blockchain, smart contracts, and decentralized autonomous organizations (DAOs)<n>It establishes a global registry for AI agents, enabling dynamic risk classification, proportional oversight, and automated compliance monitoring.<n>By integrating philosophical principles of rationality, ethical grounding, and goal alignment, ETHOS aims to create a robust research agenda for promoting trust, transparency, and participatory governance.
arXiv Detail & Related papers (2024-12-22T18:01:49Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Automating the Analysis of Institutional Design in International
Agreements [52.77024349608834]
The developed tool utilizes techniques such as collecting legal documents, annotating them with Institutional Grammar, and using graph analysis to explore the formal institutional design.
The system was tested against the 2003 UNESCO Convention for the Safeguarding of the Intangible Cultural Heritage.
arXiv Detail & Related papers (2023-05-26T08:57:11Z) - The Role of Large Language Models in the Recognition of Territorial
Sovereignty: An Analysis of the Construction of Legitimacy [67.44950222243865]
We argue that technology tools like Google Maps and Large Language Models (LLM) are often perceived as impartial and objective.
We highlight the case of three controversial territories: Crimea, West Bank and Transnitria, by comparing the responses of ChatGPT against Wikipedia information and United Nations resolutions.
arXiv Detail & Related papers (2023-03-17T08:46:49Z) - Accountability in AI: From Principles to Industry-specific Accreditation [4.033641609534416]
Recent AI-related scandals have shed a spotlight on accountability in AI.
This paper draws on literature from public policy and governance to make two contributions.
arXiv Detail & Related papers (2021-10-08T16:37:11Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.