Data-Driven Exploration for a Class of Continuous-Time Indefinite Linear--Quadratic Reinforcement Learning Problems
- URL: http://arxiv.org/abs/2507.00358v2
- Date: Wed, 23 Jul 2025 14:00:39 GMT
- Title: Data-Driven Exploration for a Class of Continuous-Time Indefinite Linear--Quadratic Reinforcement Learning Problems
- Authors: Yilie Huang, Xun Yu Zhou,
- Abstract summary: We study reinforcement learning for continuous-time linear-quadratic (LQ) control problems.<n>We propose a model-free, data-driven exploration mechanism that adaptively adjusts entropy regularization by the critic.<n>Our method achieves a sublinear regret bound that matches the best-known model-free results for this class of LQ problems.
- Score: 6.859965454961918
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study reinforcement learning (RL) for the same class of continuous-time stochastic linear--quadratic (LQ) control problems as in \cite{huang2024sublinear}, where volatilities depend on both states and controls while states are scalar-valued and running control rewards are absent. We propose a model-free, data-driven exploration mechanism that adaptively adjusts entropy regularization by the critic and policy variance by the actor. Unlike the constant or deterministic exploration schedules employed in \cite{huang2024sublinear}, which require extensive tuning for implementations and ignore learning progresses during iterations, our adaptive exploratory approach boosts learning efficiency with minimal tuning. Despite its flexibility, our method achieves a sublinear regret bound that matches the best-known model-free results for this class of LQ problems, which were previously derived only with fixed exploration schedules. Numerical experiments demonstrate that adaptive explorations accelerate convergence and improve regret performance compared to the non-adaptive model-free and model-based counterparts.
Related papers
- Stochastic Control for Fine-tuning Diffusion Models: Optimality, Regularity, and Convergence [11.400431211239958]
Diffusion models have emerged as powerful tools for generative modeling.<n>We propose a control framework for fine-tuning diffusion models.<n>We show that PI-FT achieves global convergence at a linear rate.
arXiv Detail & Related papers (2024-12-24T04:55:46Z) - Training Language Models to Self-Correct via Reinforcement Learning [98.35197671595343]
Self-correction has been found to be largely ineffective in modern large language models (LLMs)
We develop a multi-turn online reinforcement learning approach, SCoRe, that significantly improves an LLM's self-correction ability using entirely self-generated data.
We find that SCoRe achieves state-of-the-art self-correction performance, improving the base models' self-correction by 15.6% and 9.1% respectively on MATH and HumanEval.
arXiv Detail & Related papers (2024-09-19T17:16:21Z) - Sublinear Regret for a Class of Continuous-Time Linear-Quadratic Reinforcement Learning Problems [10.404992912881601]
We study reinforcement learning (RL) for a class of continuous-time linear-quadratic (LQ) control problems for diffusions.<n>We apply a model-free approach that relies neither on knowledge of model parameters nor on their estimations, and devise an RL algorithm to learn the optimal policy parameter directly.
arXiv Detail & Related papers (2024-07-24T12:26:21Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - Adaptive Robust Model Predictive Control via Uncertainty Cancellation [25.736296938185074]
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics.
We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws.
arXiv Detail & Related papers (2022-12-02T18:54:23Z) - Regret Analysis of Certainty Equivalence Policies in Continuous-Time
Linear-Quadratic Systems [0.0]
This work studies theoretical performance guarantees of a ubiquitous reinforcement learning policy for controlling the canonical model of linear-quadratic system.
We establish square-root of time regret bounds, indicating that randomized certainty equivalent policy learns optimal control actions fast from a single state trajectory.
arXiv Detail & Related papers (2022-06-09T11:47:36Z) - Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning [96.72185761508668]
Planning at Test-time (IMPLANT) is a new meta-algorithm for imitation learning.
We demonstrate that IMPLANT significantly outperforms benchmark imitation learning approaches on standard control environments.
arXiv Detail & Related papers (2022-04-07T17:16:52Z) - Reinforcement Learning Policies in Continuous-Time Linear Systems [0.0]
We present online policies that learn optimal actions fast by carefully randomizing the parameter estimates.
We prove sharp stability results for inexact system dynamics and tightly specify the infinitesimal regret caused by sub-optimal actions.
Our analysis sheds light on fundamental challenges in continuous-time reinforcement learning and suggests a useful cornerstone for similar problems.
arXiv Detail & Related papers (2021-09-16T00:08:50Z) - Training Generative Adversarial Networks by Solving Ordinary
Differential Equations [54.23691425062034]
We study the continuous-time dynamics induced by GAN training.
From this perspective, we hypothesise that instabilities in training GANs arise from the integration error.
We experimentally verify that well-known ODE solvers (such as Runge-Kutta) can stabilise training.
arXiv Detail & Related papers (2020-10-28T15:23:49Z) - Logarithmic Regret Bound in Partially Observable Linear Dynamical
Systems [91.43582419264763]
We study the problem of system identification and adaptive control in partially observable linear dynamical systems.
We present the first model estimation method with finite-time guarantees in both open and closed-loop system identification.
We show that AdaptOn is the first algorithm that achieves $textpolylogleft(Tright)$ regret in adaptive control of unknown partially observable linear dynamical systems.
arXiv Detail & Related papers (2020-03-25T06:00:33Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.