MedDiff-FT: Data-Efficient Diffusion Model Fine-tuning with Structural Guidance for Controllable Medical Image Synthesis
- URL: http://arxiv.org/abs/2507.00377v1
- Date: Tue, 01 Jul 2025 02:22:32 GMT
- Title: MedDiff-FT: Data-Efficient Diffusion Model Fine-tuning with Structural Guidance for Controllable Medical Image Synthesis
- Authors: Jianhao Xie, Ziang Zhang, Zhenyu Weng, Yuesheng Zhu, Guibo Luo,
- Abstract summary: We present MedDiff-FT, a controllable medical image generation method that fine-tunes a diffusion foundation model to produce medical images with structural dependency and domain specificity.<n>The framework effectively balances generation quality, diversity, and computational efficiency, offering a practical solution for medical data augmentation.
- Score: 19.36433173105439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in deep learning for medical image segmentation are often limited by the scarcity of high-quality training data.While diffusion models provide a potential solution by generating synthetic images, their effectiveness in medical imaging remains constrained due to their reliance on large-scale medical datasets and the need for higher image quality. To address these challenges, we present MedDiff-FT, a controllable medical image generation method that fine-tunes a diffusion foundation model to produce medical images with structural dependency and domain specificity in a data-efficient manner. During inference, a dynamic adaptive guiding mask enforces spatial constraints to ensure anatomically coherent synthesis, while a lightweight stochastic mask generator enhances diversity through hierarchical randomness injection. Additionally, an automated quality assessment protocol filters suboptimal outputs using feature-space metrics, followed by mask corrosion to refine fidelity. Evaluated on five medical segmentation datasets,MedDiff-FT's synthetic image-mask pairs improve SOTA method's segmentation performance by an average of 1% in Dice score. The framework effectively balances generation quality, diversity, and computational efficiency, offering a practical solution for medical data augmentation. The code is available at https://github.com/JianhaoXie1/MedDiff-FT.
Related papers
- SkinDualGen: Prompt-Driven Diffusion for Simultaneous Image-Mask Generation in Skin Lesions [0.0]
We propose a novel method that leverages the pretrained Stable Diffusion-2.0 model to generate high-quality synthetic skin lesion images.<n>A hybrid dataset combining real and synthetic data markedly enhances the performance of classification and segmentation models.
arXiv Detail & Related papers (2025-07-26T15:00:37Z) - Causal Disentanglement for Robust Long-tail Medical Image Generation [80.15257897500578]
We propose a novel medical image generation framework, which generates independent pathological and structural features.<n>We leverage a diffusion model guided by pathological findings to model pathological features, enabling the generation of diverse counterfactual images.
arXiv Detail & Related papers (2025-04-20T01:54:18Z) - Flow Matching for Medical Image Synthesis: Bridging the Gap Between Speed and Quality [1.0922645515457987]
We propose the use of an optimal transport flow matching approach to accelerate image generation.<n>By introducing a straighter mapping between the source and target distribution, our method significantly reduces inference time.<n>Our results demonstrate the efficiency and versatility of this framework, making it a promising advancement for medical imaging applications.
arXiv Detail & Related papers (2025-03-01T00:49:47Z) - Ambient Denoising Diffusion Generative Adversarial Networks for Establishing Stochastic Object Models from Noisy Image Data [4.069144210024564]
We propose an augmented DDGAN architecture, Ambient DDGAN (ADDGAN) for learning realistic SOMs from noisy image data.<n>The ability of the proposed ADDGAN to learn realistic SOMs from noisy image data is demonstrated.
arXiv Detail & Related papers (2025-01-31T12:40:43Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.<n>We evaluate our method on three public longitudinal benchmark datasets of brain MRI and chest X-rays for counterfactual image generation.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - MRGen: Segmentation Data Engine for Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically important imaging modalities is challenging due to the scarcity of annotated data.<n>This paper investigates leveraging generative models to synthesize data, for training segmentation models for underrepresented modalities.<n>We present MRGen, a data engine for controllable medical image synthesis conditioned on text prompts and segmentation masks.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - End-to-end autoencoding architecture for the simultaneous generation of
medical images and corresponding segmentation masks [3.1133049660590615]
We present an end-to-end architecture based on the Hamiltonian Variational Autoencoder (HVAE)
This approach yields an improved posterior distribution approximation compared to traditional Variational Autoencoders (VAE)
Our method outperforms generative adversarial conditions, showcasing enhancements in image quality synthesis.
arXiv Detail & Related papers (2023-11-17T11:56:53Z) - DiffBoost: Enhancing Medical Image Segmentation via Text-Guided Diffusion Model [3.890243179348094]
Large-scale, big-variant, high-quality data are crucial for developing robust and successful deep-learning models for medical applications.<n>This paper proposes a novel approach by developing controllable diffusion models for medical image synthesis, called DiffBoost.<n>We leverage recent diffusion probabilistic models to generate realistic and diverse synthetic medical image data.
arXiv Detail & Related papers (2023-10-19T16:18:02Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Conditional Diffusion Models for Semantic 3D Brain MRI Synthesis [0.0]
We introduce Med-DDPM, a diffusion model designed for 3D semantic brain MRI synthesis.
It effectively tackles data scarcity and privacy issues by integrating semantic conditioning.
It generates diverse, coherent images with high visual fidelity.
arXiv Detail & Related papers (2023-05-29T04:14:38Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
We conduct experiments on three publicly available datasets and evaluate the effect of different preprocessing steps in deep neural networks.
Our results demonstrate that most popular standardization steps add no value to the network performance.
We suggest that image intensity normalization approaches do not contribute to model accuracy because of the reduction of signal variance with image standardization.
arXiv Detail & Related papers (2022-04-11T17:29:36Z) - Diffusion-Weighted Magnetic Resonance Brain Images Generation with
Generative Adversarial Networks and Variational Autoencoders: A Comparison
Study [55.78588835407174]
We show that high quality, diverse and realistic-looking diffusion-weighted magnetic resonance images can be synthesized using deep generative models.
We present two networks, the Introspective Variational Autoencoder and the Style-Based GAN, that qualify for data augmentation in the medical field.
arXiv Detail & Related papers (2020-06-24T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.