論文の概要: Causal Prompting for Implicit Sentiment Analysis with Large Language Models
- arxiv url: http://arxiv.org/abs/2507.00389v1
- Date: Tue, 01 Jul 2025 03:01:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:59.243606
- Title: Causal Prompting for Implicit Sentiment Analysis with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた突発的感性分析のための因果プロンプト
- Authors: Jing Ren, Wenhao Zhou, Bowen Li, Mujie Liu, Nguyen Linh Dan Le, Jiade Cen, Liping Chen, Ziqi Xu, Xiwei Xu, Xiaodong Li,
- Abstract要約: Implicit Sentiment Analysis (ISA) は、明示的に述べられるのではなく、示唆される感情を推測することを目的としている。
近年,Large Language Models (LLMs) を用いたプロンプトベースの手法がISAで実現されている。
我々は,CoT推論に正面調整を組み込んだ因果的プロンプトフレームワークであるCAPITALを提案する。
- 参考スコア(独自算出の注目度): 21.39152516811571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit Sentiment Analysis (ISA) aims to infer sentiment that is implied rather than explicitly stated, requiring models to perform deeper reasoning over subtle contextual cues. While recent prompting-based methods using Large Language Models (LLMs) have shown promise in ISA, they often rely on majority voting over chain-of-thought (CoT) reasoning paths without evaluating their causal validity, making them susceptible to internal biases and spurious correlations. To address this challenge, we propose CAPITAL, a causal prompting framework that incorporates front-door adjustment into CoT reasoning. CAPITAL decomposes the overall causal effect into two components: the influence of the input prompt on the reasoning chains, and the impact of those chains on the final output. These components are estimated using encoder-based clustering and the NWGM approximation, with a contrastive learning objective used to better align the encoder's representation with the LLM's reasoning space. Experiments on benchmark ISA datasets with three LLMs demonstrate that CAPITAL consistently outperforms strong prompting baselines in both accuracy and robustness, particularly under adversarial conditions. This work offers a principled approach to integrating causal inference into LLM prompting and highlights its benefits for bias-aware sentiment reasoning. The source code and case study are available at: https://github.com/whZ62/CAPITAL.
- Abstract(参考訳): Implicit Sentiment Analysis (ISA) は、暗黙の文脈的手がかりよりも深い推論をモデルに要求し、明示された感情を推測することを目的としている。
近年,Large Language Models (LLMs) を用いたプロンプトベースの手法はISAにおいて有望であるが,因果的妥当性を評価せずにチェーン・オブ・ソート(CoT)推論パスに対する多数決に頼っていることが多く,内部バイアスや素因的相関の影響を受けやすい。
この課題に対処するために,正面調整をCoT推論に組み込んだ因果促進フレームワークであるCAPITALを提案する。
CAPITALは、全体的な因果効果を2つの成分に分解する。
これらのコンポーネントは、エンコーダベースのクラスタリングとNWGM近似を用いて推定され、エンコーダの表現とLLMの推論空間との整合性を改善するために、対照的な学習目的が使用される。
3つのLCMを用いたベンチマークISAデータセットの実験では、CAPITALは、特に逆境条件下で、精度と堅牢性の両方において、ベースラインを確実に向上させることを示した。
この研究は、因果推論を LLM に組み込むための原則的なアプローチを提供し、バイアスを意識した感情推論の利点を強調している。
ソースコードとケーススタディは、https://github.com/whZ62/CAPITAL.comで公開されている。
関連論文リスト
- PixelThink: Towards Efficient Chain-of-Pixel Reasoning [70.32510083790069]
PixelThinkは、外部から推定されるタスクの難しさと内部で測定されたモデルの不確実性を統合する、シンプルで効果的なスキームである。
シーンの複雑さと予測信頼度に応じて推論の長さを圧縮することを学ぶ。
実験により,提案手法は推論効率と全体セグメンテーション性能の両方を改善した。
論文 参考訳(メタデータ) (2025-05-29T17:55:49Z) - Ice Cream Doesn't Cause Drowning: Benchmarking LLMs Against Statistical Pitfalls in Causal Inference [16.706959860667133]
大規模言語モデル(LLM)が厳密で信頼性の高い統計的因果推論を扱えるかどうかは不明である。
CausalPitfallsベンチマークは、信頼できる因果推論システムの開発を進めるための重要なガイダンスと定量的指標を提供する。
論文 参考訳(メタデータ) (2025-05-19T23:06:00Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
大規模言語モデル(LLM)が,その世代を理論的にどのように説明するかを考察する。
提案手法は帰属に基づく説明よりも「偽り」が少ないことを示す。
論文 参考訳(メタデータ) (2024-06-28T20:06:30Z) - Cause and Effect: Can Large Language Models Truly Understand Causality? [1.2334534968968969]
本研究では,CARE CA(Content Aware Reasoning Enhancement with Counterfactual Analysis)フレームワークという新しいアーキテクチャを提案する。
提案するフレームワークには,ConceptNetと反ファクト文を備えた明示的な因果検出モジュールと,大規模言語モデルによる暗黙的な因果検出が組み込まれている。
ConceptNetの知識は、因果的発見、因果的識別、反事実的推論といった複数の因果的推論タスクのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:02:14Z) - Sentiment Analysis through LLM Negotiations [58.67939611291001]
感情分析の標準的なパラダイムは、単一のLCMに依存して、その決定を1ラウンドで行うことである。
本稿では,感情分析のためのマルチLLMネゴシエーションフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-03T12:35:29Z) - LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers [60.009969929857704]
論理的推論は、科学、数学、社会に潜在的影響を与える可能性のある人工知能にとって重要なタスクである。
本研究では、LINCと呼ばれるモジュール型ニューロシンボリックプログラミングのようなタスクを再構成する。
我々は,FOLIOとProofWriterのバランスの取れたサブセットに対して,ほぼすべての実験条件下で,3つの異なるモデルに対して顕著な性能向上を観察した。
論文 参考訳(メタデータ) (2023-10-23T17:58:40Z) - FactCHD: Benchmarking Fact-Conflicting Hallucination Detection [64.4610684475899]
FactCHD は LLM からファクトコンフリクトの幻覚を検出するために設計されたベンチマークである。
FactCHDは、バニラ、マルチホップ、比較、セット操作など、さまざまな事実パターンにまたがる多様なデータセットを備えている。
Llama2 に基づくツール強化 ChatGPT と LoRA-tuning による反射的考察を合成する Truth-Triangulator を提案する。
論文 参考訳(メタデータ) (2023-10-18T16:27:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。