Best Agent Identification for General Game Playing
- URL: http://arxiv.org/abs/2507.00451v1
- Date: Tue, 01 Jul 2025 06:07:56 GMT
- Title: Best Agent Identification for General Game Playing
- Authors: Matthew Stephenson, Alex Newcombe, Eric Piette, Dennis Soemers,
- Abstract summary: We present an efficient and generalised procedure to accurately identify the best performing algorithm for each sub-task in a multi-problem domain.<n>We propose an optimistic selection process based on the Wilson score interval (Optimistic-WS) that ranks each arm across all bandits in terms of their potential regret reduction.
- Score: 0.6749750044497731
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an efficient and generalised procedure to accurately identify the best performing algorithm for each sub-task in a multi-problem domain. Our approach treats this as a set of best arm identification problems for multi-armed bandits, where each bandit corresponds to a specific task and each arm corresponds to a specific algorithm or agent. We propose an optimistic selection process based on the Wilson score interval (Optimistic-WS) that ranks each arm across all bandits in terms of their potential regret reduction. We evaluate the performance of Optimistic-WS on two of the most popular general game domains, the General Video Game AI (GVGAI) framework and the Ludii general game playing system, with the goal of identifying the highest performing agent for each game within a limited number of trials. Compared to previous best arm identification algorithms for multi-armed bandits, our results demonstrate a substantial performance improvement in terms of average simple regret. This novel approach can be used to significantly improve the quality and accuracy of agent evaluation procedures for general game frameworks, as well as other multi-task domains with high algorithm runtimes.
Related papers
- Optimal Multi-Objective Best Arm Identification with Fixed Confidence [62.36929749450298]
We consider a multi-armed bandit setting in which each arm yields an $M$-dimensional vector reward upon selection.<n>The end goal is to identify the best arm of em every objective in the shortest (expected) time subject to an upper bound on the probability of error.<n>We propose an algorithm that uses the novel idea of em surrogate proportions to sample the arms at each time step, eliminating the need to solve the max-min optimisation problem at each step.
arXiv Detail & Related papers (2025-01-23T12:28:09Z) - QuACK: A Multipurpose Queuing Algorithm for Cooperative $k$-Armed Bandits [5.530212768657544]
We study the cooperative $k$-armed bandit problem, where a network of $m$ agents collaborate to find the optimal action.
We provide a black-box reduction that allows us to extend any single-agent bandit algorithm to the multi-agent setting.
arXiv Detail & Related papers (2024-10-31T12:20:36Z) - Multi-agent Multi-armed Bandits with Stochastic Sharable Arm Capacities [69.34646544774161]
We formulate a new variant of multi-player multi-armed bandit (MAB) model, which captures arrival of requests to each arm and the policy of allocating requests to players.
The challenge is how to design a distributed learning algorithm such that players select arms according to the optimal arm pulling profile.
We design an iterative distributed algorithm, which guarantees that players can arrive at a consensus on the optimal arm pulling profile in only M rounds.
arXiv Detail & Related papers (2024-08-20T13:57:00Z) - Robust and Performance Incentivizing Algorithms for Multi-Armed Bandits with Strategic Agents [52.75161794035767]
We introduce a class of bandit algorithms that meet the two objectives of performance incentivization and robustness simultaneously.<n>We show that settings where the principal has no information about the arms' performance characteristics can be handled by combining ideas from second price auctions with our algorithms.
arXiv Detail & Related papers (2023-12-13T06:54:49Z) - Pure Exploration under Mediators' Feedback [63.56002444692792]
Multi-armed bandits are a sequential-decision-making framework, where, at each interaction step, the learner selects an arm and observes a reward.
We consider the scenario in which the learner has access to a set of mediators, each of which selects the arms on the agent's behalf according to a and possibly unknown policy.
We propose a sequential decision-making strategy for discovering the best arm under the assumption that the mediators' policies are known to the learner.
arXiv Detail & Related papers (2023-08-29T18:18:21Z) - Differential Good Arm Identification [4.666048091337632]
This paper targets a variant of the multi-armed bandit problem called good arm identification (GAI)
GAI is a pure-exploration bandit problem with the goal to output as many good arms using as few samples as possible.
We propose DGAI - a differentiable good arm identification algorithm.
arXiv Detail & Related papers (2023-03-13T14:28:21Z) - Versatile Dueling Bandits: Best-of-both-World Analyses for Online
Learning from Preferences [28.79598714109439]
We study the problem of $K$-armed dueling bandit for both and adversarial environments.
We first propose a novel reduction from any (general) dueling bandits to multi-armed bandits.
Our algorithm is also the first to achieve an optimal $O(sum_i = 1K fraclog TDelta_i)$ regret bound against the Condorcet-winner benchmark.
arXiv Detail & Related papers (2022-02-14T13:37:23Z) - Portfolio Search and Optimization for General Strategy Game-Playing [58.896302717975445]
We propose a new algorithm for optimization and action-selection based on the Rolling Horizon Evolutionary Algorithm.
For the optimization of the agents' parameters and portfolio sets we study the use of the N-tuple Bandit Evolutionary Algorithm.
An analysis of the agents' performance shows that the proposed algorithm generalizes well to all game-modes and is able to outperform other portfolio methods.
arXiv Detail & Related papers (2021-04-21T09:28:28Z) - Efficient Pure Exploration for Combinatorial Bandits with Semi-Bandit
Feedback [51.21673420940346]
Combinatorial bandits generalize multi-armed bandits, where the agent chooses sets of arms and observes a noisy reward for each arm contained in the chosen set.
We focus on the pure-exploration problem of identifying the best arm with fixed confidence, as well as a more general setting, where the structure of the answer set differs from the one of the action set.
Based on a projection-free online learning algorithm for finite polytopes, it is the first computationally efficient algorithm which is convexally optimal and has competitive empirical performance.
arXiv Detail & Related papers (2021-01-21T10:35:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.