Process-aware and high-fidelity microstructure generation using stable diffusion
- URL: http://arxiv.org/abs/2507.00459v1
- Date: Tue, 01 Jul 2025 06:16:53 GMT
- Title: Process-aware and high-fidelity microstructure generation using stable diffusion
- Authors: Hoang Cuong Phan, Minh Tien Tran, Chihun Lee, Hoheok Kim, Sehyok Oh, Dong-Kyu Kim, Ho Won Lee,
- Abstract summary: We present a novel process-aware generative modeling approach based on Stable Diffusion 3.5 Large (SD3.5-Large)<n>Our method introduces numeric-aware embeddings that encode continuous variables directly into the model's conditioning.<n>We validate realism using a semantic segmentation model based on a fine-tuned U-Net with a VGG16 encoder on 24 labeled micrographs.
- Score: 0.8060624778923473
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Synthesizing realistic microstructure images conditioned on processing parameters is crucial for understanding process-structure relationships in materials design. However, this task remains challenging due to limited training micrographs and the continuous nature of processing variables. To overcome these challenges, we present a novel process-aware generative modeling approach based on Stable Diffusion 3.5 Large (SD3.5-Large), a state-of-the-art text-to-image diffusion model adapted for microstructure generation. Our method introduces numeric-aware embeddings that encode continuous variables (annealing temperature, time, and magnification) directly into the model's conditioning, enabling controlled image generation under specified process conditions and capturing process-driven microstructural variations. To address data scarcity and computational constraints, we fine-tune only a small fraction of the model's weights via DreamBooth and Low-Rank Adaptation (LoRA), efficiently transferring the pre-trained model to the materials domain. We validate realism using a semantic segmentation model based on a fine-tuned U-Net with a VGG16 encoder on 24 labeled micrographs. It achieves 97.1% accuracy and 85.7% mean IoU, outperforming previous methods. Quantitative analyses using physical descriptors and spatial statistics show strong agreement between synthetic and real microstructures. Specifically, two-point correlation and lineal-path errors remain below 2.1% and 0.6%, respectively. Our method represents the first adaptation of SD3.5-Large for process-aware microstructure generation, offering a scalable approach for data-driven materials design.
Related papers
- Improving Progressive Generation with Decomposable Flow Matching [50.63174319509629]
Decomposable Flow Matching (DFM) is a simple and effective framework for the progressive generation of visual media.<n>On Imagenet-1k 512px, DFM achieves 35.2% improvements in FDD scores over the base architecture and 26.4% over the best-performing baseline.
arXiv Detail & Related papers (2025-06-24T17:58:02Z) - Solving Inverse Problems with FLAIR [59.02385492199431]
Flow-based latent generative models are able to generate images with remarkable quality, even enabling text-to-image generation.<n>We present FLAIR, a novel training free variational framework that leverages flow-based generative models as a prior for inverse problems.<n>Results on standard imaging benchmarks demonstrate that FLAIR consistently outperforms existing diffusion- and flow-based methods in terms of reconstruction quality and sample diversity.
arXiv Detail & Related papers (2025-06-03T09:29:47Z) - CRISP: A Framework for Cryo-EM Image Segmentation and Processing with Conditional Random Field [0.0]
We present a pipeline that automatically generates high-quality segmentation maps from cryo-EM data.<n>Our modular framework enables the selection of various segmentation models and loss functions.<n>When trained on a limited set of micrographs, our approach achieves over 90% accuracy, recall, precision, Intersection over Union (IoU) and F1-score on synthetic data.
arXiv Detail & Related papers (2025-02-12T10:44:45Z) - Stable Consistency Tuning: Understanding and Improving Consistency Models [40.2712218203989]
Diffusion models achieve superior generation quality but suffer from slow generation speed due to iterative nature of denoising.<n> consistency models, a new generative family, achieve competitive performance with significantly faster sampling.<n>We propose a novel framework for understanding consistency models by modeling the denoising process of the diffusion model as a Markov Decision Process (MDP) and framing consistency model training as the value estimation through Temporal Difference(TD) Learning.
arXiv Detail & Related papers (2024-10-24T17:55:52Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
Model inversion attacks (MIAs) aim to reconstruct private images from a target classifier's training set, thereby raising privacy concerns in AI applications.
Previous GAN-based MIAs tend to suffer from inferior generative fidelity due to GAN's inherent flaws and biased optimization within latent space.
We propose Diffusion-based Model Inversion (Diff-MI) attacks to alleviate these issues.
arXiv Detail & Related papers (2024-07-16T06:38:49Z) - Isomorphic Pruning for Vision Models [56.286064975443026]
Structured pruning reduces the computational overhead of deep neural networks by removing redundant sub-structures.
We present Isomorphic Pruning, a simple approach that demonstrates effectiveness across a range of network architectures.
arXiv Detail & Related papers (2024-07-05T16:14:53Z) - Scaling Rectified Flow Transformers for High-Resolution Image Synthesis [22.11487736315616]
Rectified flow is a recent generative model formulation that connects data and noise in a straight line.
We improve existing noise sampling techniques for training rectified flow models by biasing them towards perceptually relevant scales.
We present a novel transformer-based architecture for text-to-image generation that uses separate weights for the two modalities.
arXiv Detail & Related papers (2024-03-05T18:45:39Z) - TC-DiffRecon: Texture coordination MRI reconstruction method based on
diffusion model and modified MF-UNet method [2.626378252978696]
We propose a novel diffusion model-based MRI reconstruction method, named TC-DiffRecon, which does not rely on a specific acceleration factor for training.
We also suggest the incorporation of the MF-UNet module, designed to enhance the quality of MRI images generated by the model.
arXiv Detail & Related papers (2024-02-17T13:09:00Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - A microstructure estimation Transformer inspired by sparse
representation for diffusion MRI [11.761543033212797]
We present a learning-based framework based on Transformer for dMRI-based microstructure estimation with downsampled q-space data.
The proposed method achieved up to 11.25 folds of acceleration in scan time and outperformed the other state-of-the-art learning-based methods.
arXiv Detail & Related papers (2022-05-13T05:14:22Z) - Normalizing Flows with Multi-Scale Autoregressive Priors [131.895570212956]
We introduce channel-wise dependencies in their latent space through multi-scale autoregressive priors (mAR)
Our mAR prior for models with split coupling flow layers (mAR-SCF) can better capture dependencies in complex multimodal data.
We show that mAR-SCF allows for improved image generation quality, with gains in FID and Inception scores compared to state-of-the-art flow-based models.
arXiv Detail & Related papers (2020-04-08T09:07:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.