Unleashing the Potential of All Test Samples: Mean-Shift Guided Test-Time Adaptation
- URL: http://arxiv.org/abs/2507.00462v1
- Date: Tue, 01 Jul 2025 06:22:00 GMT
- Title: Unleashing the Potential of All Test Samples: Mean-Shift Guided Test-Time Adaptation
- Authors: Jizhou Han, Chenhao Ding, SongLin Dong, Yuhang He, Xinyuan Gao, Yihong Gong,
- Abstract summary: Existing training-free test-time adaptation methods operate strictly within CLIP's original feature space.<n>We propose MS-TTA, a training-free approach that enhances feature representations beyond CLIP's space using a single-step k-nearest neighbors (kNN) Mean-Shift.
- Score: 18.82879703518279
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual-language models (VLMs) like CLIP exhibit strong generalization but struggle with distribution shifts at test time. Existing training-free test-time adaptation (TTA) methods operate strictly within CLIP's original feature space, relying on high-confidence samples while overlooking the potential of low-confidence ones. We propose MS-TTA, a training-free approach that enhances feature representations beyond CLIP's space using a single-step k-nearest neighbors (kNN) Mean-Shift. By refining all test samples, MS-TTA improves feature compactness and class separability, leading to more stable adaptation. Additionally, a cache of refined embeddings further enhances inference by providing Mean Shift enhanced logits. Extensive evaluations on OOD and cross-dataset benchmarks demonstrate that MS-TTA consistently outperforms state-of-the-art training-free TTA methods, achieving robust adaptation without requiring additional training.
Related papers
- BoostAdapter: Improving Vision-Language Test-Time Adaptation via Regional Bootstrapping [64.8477128397529]
We propose a training-required and training-free test-time adaptation framework.
We maintain a light-weight key-value memory for feature retrieval from instance-agnostic historical samples and instance-aware boosting samples.
We theoretically justify the rationality behind our method and empirically verify its effectiveness on both the out-of-distribution and the cross-domain datasets.
arXiv Detail & Related papers (2024-10-20T15:58:43Z) - Bridging SFT and DPO for Diffusion Model Alignment with Self-Sampling Preference Optimization [67.8738082040299]
Self-Sampling Preference Optimization (SSPO) is a new alignment method for post-training reinforcement learning.<n>SSPO eliminates the need for paired data and reward models while retaining the training stability of SFT.<n>SSPO surpasses all previous approaches on the text-to-image benchmarks and demonstrates outstanding performance on the text-to-video benchmarks.
arXiv Detail & Related papers (2024-10-07T17:56:53Z) - BaFTA: Backprop-Free Test-Time Adaptation For Zero-Shot Vision-Language Models [20.88680592729709]
We propose a novel backpropagation-free algorithm BaFTA for test-time adaptation of vision-language models.
BaFTA directly estimates class centroids using online clustering within a projected embedding space.
We demonstrate that BaFTA consistently outperforms state-of-the-art test-time adaptation methods in both effectiveness and efficiency.
arXiv Detail & Related papers (2024-06-17T08:16:24Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - CLIPArTT: Adaptation of CLIP to New Domains at Test Time [19.0284321951354]
We introduce CLIP Adaptation duRing Test-Time (CLIPArTT), a fully test-time adaptation (TTA) approach for pre-trained vision-language models (VLMs)<n>Our method employs a unique, minimally invasive text prompt tuning process, wherein multiple predicted classes are aggregated into a single new text prompt, used as emphpseudo label to re-classify inputs.<n>Our findings demonstrate that, without requiring additional transformations nor new trainable modules, CLIPArTT enhances performance dynamically across non-corrupted datasets.
arXiv Detail & Related papers (2024-05-01T07:24:30Z) - Training-Free Unsupervised Prompt for Vision-Language Models [27.13778811871694]
We propose Training-Free Unsupervised Prompts (TFUP) to preserve inherent representation capabilities and enhance them with a residual connection to similarity-based prediction probabilities.
TFUP achieves surprising performance, even surpassing the training-base method on multiple classification datasets.
Our TFUP-T achieves new state-of-the-art classification performance compared to unsupervised and few-shot adaptation approaches on multiple benchmarks.
arXiv Detail & Related papers (2024-04-25T05:07:50Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Test-Time Training for Semantic Segmentation with Output Contrastive
Loss [12.535720010867538]
Deep learning-based segmentation models have achieved impressive performance on public benchmarks, but generalizing well to unseen environments remains a major challenge.
This paper introduces Contrastive Loss (OCL), known for its capability to learn robust and generalized representations, to stabilize the adaptation process.
Our method excels even when applied to models initially pre-trained using domain adaptation methods on test domain data, showcasing its resilience and adaptability.
arXiv Detail & Related papers (2023-11-14T03:13:47Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts [117.72709110877939]
Test-time adaptation (TTA) has the potential to adapt a pre-trained model to unlabeled data during testing, before making predictions.<n>We categorize TTA into several distinct groups based on the form of test data, namely, test-time domain adaptation, test-time batch adaptation, and online test-time adaptation.
arXiv Detail & Related papers (2023-03-27T16:32:21Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances.
We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on unseen test data.
Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
arXiv Detail & Related papers (2023-02-02T04:27:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.