論文の概要: A Practical Guide to Interpretable Role-Based Clustering in Multi-Layer Financial Networks
- arxiv url: http://arxiv.org/abs/2507.00600v1
- Date: Tue, 01 Jul 2025 09:30:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:59.558607
- Title: A Practical Guide to Interpretable Role-Based Clustering in Multi-Layer Financial Networks
- Title(参考訳): 多層ファイナンシャルネットワークにおけるロールベースクラスタリングの実践的ガイド
- Authors: Christian Franssen, Iman van Lelyveld, Bernd Heidergott,
- Abstract要約: 多層ファイナンシャルネットワークのための解釈可能なロールベースのクラスタリング手法を提案する。
提案手法は,近接測度,クラスタ評価基準,アルゴリズム選択によって定義される一般的なクラスタリングフレームワークに従う。
ECBの金融市場統計報告のトランザクションレベルデータを用いて、このアプローチが異質な機関の役割を明らかにする方法を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the functional roles of financial institutions within interconnected markets is critical for effective supervision, systemic risk assessment, and resolution planning. We propose an interpretable role-based clustering approach for multi-layer financial networks, designed to identify the functional positions of institutions across different market segments. Our method follows a general clustering framework defined by proximity measures, cluster evaluation criteria, and algorithm selection. We construct explainable node embeddings based on egonet features that capture both direct and indirect trading relationships within and across market layers. Using transaction-level data from the ECB's Money Market Statistical Reporting (MMSR), we demonstrate how the approach uncovers heterogeneous institutional roles such as market intermediaries, cross-segment connectors, and peripheral lenders or borrowers. The results highlight the flexibility and practical value of role-based clustering in analyzing financial networks and understanding institutional behavior in complex market structures.
- Abstract(参考訳): 相互接続市場における金融機関の機能的役割の理解は、効果的な監督、システム的リスク評価、解決計画に不可欠である。
本稿では,多層金融ネットワークにおける役割ベースのクラスタリング手法を提案する。
提案手法は,近接測度,クラスタ評価基準,アルゴリズム選択によって定義される一般的なクラスタリングフレームワークに従う。
マーケット層内および市場層間の直接的および間接的トレーディング関係をキャプチャするegonet機能に基づく説明可能なノード埋め込みを構築した。
ECBの金融市場統計報告(MMSR)のトランザクションレベルデータを用いて、市場仲介、クロスセグメントコネクタ、周辺融資者や借り手といった異種機関の役割を明らかにする。
その結果、金融ネットワークの分析や複雑な市場構造における制度的行動の理解において、役割ベースのクラスタリングの柔軟性と実践的価値を強調した。
関連論文リスト
- AnyMAC: Cascading Flexible Multi-Agent Collaboration via Next-Agent Prediction [70.60422261117816]
本稿では,グラフ構造ではなくシーケンシャル構造を用いて,マルチエージェント協調を再考するフレームワークを提案する。
提案手法は,(1)各ステップで最も適したエージェントロールを選択するNext-Agent Predictionと,(2)各エージェントが前ステップから関連する情報にアクセスできるようにするNext-Context Selectionの2つの重要な方向に焦点を当てる。
論文 参考訳(メタデータ) (2025-06-21T18:34:43Z) - Offline Multi-agent Reinforcement Learning via Score Decomposition [51.23590397383217]
オフライン協調型マルチエージェント強化学習(MARL)は、分散シフトによる固有の課題に直面している。
この作業は、オフラインとオンラインのMARL間の分散ギャップを明示的に解決する最初の作業である。
論文 参考訳(メタデータ) (2025-05-09T11:42:31Z) - MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents [59.825725526176655]
大規模言語モデル(LLM)は、自律的なエージェントとして顕著な能力を示している。
既存のベンチマークでは、単一エージェントタスクにフォーカスするか、狭いドメインに限定されており、マルチエージェントのコーディネーションと競合のダイナミクスを捉えていない。
多様な対話シナリオにまたがってLLMベースのマルチエージェントシステムを評価するためのベンチマークであるMultiAgentBenchを紹介する。
論文 参考訳(メタデータ) (2025-03-03T05:18:50Z) - Modelling Opaque Bilateral Market Dynamics in Financial Trading: Insights from a Multi-Agent Simulation Study [15.379345372327375]
本稿では,オーストラリア国債取引における不透明な二国間市場を表現することを目的とする。
交渉された取引と限られた数のエージェントによって特徴づけられる二国間市場の特異性は、エージェントベースのモデリングと量的金融に価値ある洞察をもたらす。
市場構造における市場剛性の影響を考察し,市場設計における安定性の要素について考察する。
論文 参考訳(メタデータ) (2024-05-05T08:42:20Z) - A Network Simulation of OTC Markets with Multiple Agents [3.8944986367855963]
我々は、取引が市場メーカによってのみ仲介される、オーバー・ザ・カウンタ(OTC)金融市場をシミュレートするための新しいアプローチを提案する。
本稿では,ネットワークモデルを用いて市場構造が価格変動に与える影響について考察する。
論文 参考訳(メタデータ) (2024-05-03T20:45:00Z) - Networked Communication for Decentralised Agents in Mean-Field Games [59.01527054553122]
平均フィールドゲームフレームワークにネットワーク通信を導入する。
当社のアーキテクチャは、中央集権型と独立した学習ケースの双方で保証されていることを証明しています。
ネットワーク化されたアプローチは、障害の更新や人口規模の変化に対する堅牢性という点において、両方の選択肢に対して大きなメリットがあることが示されています。
論文 参考訳(メタデータ) (2023-06-05T10:45:39Z) - Flexible categorization for auditing using formal concept analysis and
Dempster-Shafer theory [55.878249096379804]
我々は、異なる金融口座に対する異なる利息の程度に応じて分類する様々な方法を研究する。
本稿で開発したフレームワークは,説明可能な分類の獲得と研究のための公式な基盤を提供する。
論文 参考訳(メタデータ) (2022-10-31T13:49:16Z) - Policy Diagnosis via Measuring Role Diversity in Cooperative Multi-agent
RL [107.58821842920393]
我々はエージェントの行動差を定量化し、bfロールの多様性を通して政策パフォーマンスとの関係を構築する
MARLの誤差は, 役割多様性と強い関係を持つ3つの部分に分けられる。
分解された要因は3つの一般的な方向における政策最適化に大きな影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2022-06-01T04:58:52Z) - Detecting data-driven robust statistical arbitrage strategies with deep
neural networks [5.812554622073437]
我々は、金融市場における堅牢な統計的仲裁戦略の特定を可能にする、ディープニューラルネットワークに基づくアプローチを提案する。
提示された新しい手法は、大量の基礎証券を同時に検討することができる。
本研究では、観測された市場データから導出可能な許容確率尺度のあいまい性セットを構築する方法を提案する。
論文 参考訳(メタデータ) (2022-03-07T07:23:18Z) - A Hybrid Learning Approach to Detecting Regime Switches in Financial
Markets [0.0]
本稿では,米国金融市場におけるレギュラースイッチ検出のための新しい枠組みを提案する。
クラスタ分析と分類の組み合わせを用いて、公開可能な経済データに基づいて金融市場の体制を同定する。
検出された体制に基づいて2つの取引戦略を構築・評価することで,枠組みの有効性を示す。
論文 参考訳(メタデータ) (2021-08-05T01:15:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。