TopoStreamer: Temporal Lane Segment Topology Reasoning in Autonomous Driving
- URL: http://arxiv.org/abs/2507.00709v2
- Date: Sun, 20 Jul 2025 08:35:35 GMT
- Title: TopoStreamer: Temporal Lane Segment Topology Reasoning in Autonomous Driving
- Authors: Yiming Yang, Yueru Luo, Bingkun He, Hongbin Lin, Suzhong Fu, Chao Zheng, Zhipeng Cao, Erlong Li, Chao Yan, Shuguang Cui, Zhen Li,
- Abstract summary: TopoStreamer is an end-to-end temporal perception model for lane segment topology reasoning.<n>TopoStreamer introduces three key improvements: streaming attribute constraints, dynamic lane boundary positional encoding, and lane segment denoising.<n>On the Open-Lane-V2 dataset, TopoStreamer demonstrates significant improvements over state-of-the-art methods.
- Score: 52.25176274203747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lane segment topology reasoning constructs a comprehensive road network by capturing the topological relationships between lane segments and their semantic types. This enables end-to-end autonomous driving systems to perform road-dependent maneuvers such as turning and lane changing. However, the limitations in consistent positional embedding and temporal multiple attribute learning in existing methods hinder accurate roadnet reconstruction. To address these issues, we propose TopoStreamer, an end-to-end temporal perception model for lane segment topology reasoning. Specifically, TopoStreamer introduces three key improvements: streaming attribute constraints, dynamic lane boundary positional encoding, and lane segment denoising. The streaming attribute constraints enforce temporal consistency in both centerline and boundary coordinates, along with their classifications. Meanwhile, dynamic lane boundary positional encoding enhances the learning of up-to-date positional information within queries, while lane segment denoising helps capture diverse lane segment patterns, ultimately improving model performance. Additionally, we assess the accuracy of existing models using a lane boundary classification metric, which serves as a crucial measure for lane-changing scenarios in autonomous driving. On the OpenLane-V2 dataset, TopoStreamer demonstrates significant improvements over state-of-the-art methods, achieving substantial performance gains of +3.0% mAP in lane segment perception and +1.7% OLS in centerline perception tasks.
Related papers
- Reusing Attention for One-stage Lane Topology Understanding [32.464423838732635]
We propose a one-stage architecture that simultaneously predicts traffic elements, lane centerlines and topology relationship.<n>Our key innovation lies in reusing intermediate attention resources within distinct transformer decoders.<n>Our approach outperforms baseline methods in both accuracy and efficiency.
arXiv Detail & Related papers (2025-07-23T15:48:16Z) - Monocular Lane Detection Based on Deep Learning: A Survey [51.19079381823076]
Lane detection plays an important role in autonomous driving perception systems.<n>As deep learning algorithms gain popularity, monocular lane detection methods based on them have demonstrated superior performance.<n>This paper presents a comprehensive overview of existing methods, encompassing both the increasingly mature 2D lane detection approaches and the developing 3D lane detection works.
arXiv Detail & Related papers (2024-11-25T12:09:43Z) - LMT-Net: Lane Model Transformer Network for Automated HD Mapping from Sparse Vehicle Observations [11.395749549636868]
Lane Model Transformer Network (LMT-Net) is an encoder-decoder neural network architecture that performs polyline encoding and predicts lane pairs and their connectivity.
We evaluate the performance of LMT-Net on an internal dataset that consists of multiple vehicle observations as well as human annotations as Ground Truth (GT)
arXiv Detail & Related papers (2024-09-19T02:14:35Z) - Homography Guided Temporal Fusion for Road Line and Marking Segmentation [73.47092021519245]
Road lines and markings are frequently occluded in the presence of moving vehicles, shadow, and glare.
We propose a Homography Guided Fusion (HomoFusion) module to exploit temporally-adjacent video frames for complementary cues.
We show that exploiting available camera intrinsic data and ground plane assumption for cross-frame correspondence can lead to a light-weight network with significantly improved performances in speed and accuracy.
arXiv Detail & Related papers (2024-04-11T10:26:40Z) - LaneSegNet: Map Learning with Lane Segment Perception for Autonomous
Driving [60.55208681215818]
We introduce LaneSegNet, the first end-to-end mapping network generating lane segments to obtain a complete representation of the road structure.
Our algorithm features two key modifications. One is a lane attention module to capture pivotal region details within the long-range feature space.
On the OpenLane-V2 dataset, LaneSegNet outperforms previous counterparts by a substantial gain across three tasks.
arXiv Detail & Related papers (2023-12-26T16:22:10Z) - Graph-based Topology Reasoning for Driving Scenes [102.35885039110057]
We present TopoNet, the first end-to-end framework capable of abstracting traffic knowledge beyond conventional perception tasks.
We evaluate TopoNet on the challenging scene understanding benchmark, OpenLane-V2.
arXiv Detail & Related papers (2023-04-11T15:23:29Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Lane Detection Model Based on Spatio-Temporal Network With Double
Convolutional Gated Recurrent Units [11.968518335236787]
Lane detection will remain an open problem for some time to come.
A-temporal network with double Conal Gated Recurrent Units (ConvGRUs) proposed to address lane detection in challenging scenes.
Our model can outperform the state-of-the-art lane detection models.
arXiv Detail & Related papers (2020-08-10T06:50:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.