Real-Time Inverse Kinematics for Generating Multi-Constrained Movements of Virtual Human Characters
- URL: http://arxiv.org/abs/2507.00792v2
- Date: Thu, 17 Jul 2025 11:54:07 GMT
- Title: Real-Time Inverse Kinematics for Generating Multi-Constrained Movements of Virtual Human Characters
- Authors: Hendric Voss, Stefan Kopp,
- Abstract summary: This paper introduces a novel real-time inverse kinematics (IK) solver specifically designed for realistic human-like movement generation.<n>By treating forward and inverse kinematics as differentiable operations, our method effectively addresses common challenges such as error accumulation and complicated joint limits.<n>Results indicate that our IK solver achieves real-time performance, exhibiting rapid convergence, minimal computational overhead per iteration, and improved success rates compared to existing methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generating accurate and realistic virtual human movements in real-time is of high importance for a variety of applications in computer graphics, interactive virtual environments, robotics, and biomechanics. This paper introduces a novel real-time inverse kinematics (IK) solver specifically designed for realistic human-like movement generation. Leveraging the automatic differentiation and just-in-time compilation of TensorFlow, the proposed solver efficiently handles complex articulated human skeletons with high degrees of freedom. By treating forward and inverse kinematics as differentiable operations, our method effectively addresses common challenges such as error accumulation and complicated joint limits in multi-constrained problems, which are critical for realistic human motion modeling. We demonstrate the solver's effectiveness on the SMPLX human skeleton model, evaluating its performance against widely used iterative-based IK algorithms, like Cyclic Coordinate Descent (CCD), FABRIK, and the nonlinear optimization algorithm IPOPT. Our experiments cover both simple end-effector tasks and sophisticated, multi-constrained problems with realistic joint limits. Results indicate that our IK solver achieves real-time performance, exhibiting rapid convergence, minimal computational overhead per iteration, and improved success rates compared to existing methods. The project code is available at https://github.com/hvoss-techfak/TF-JAX-IK
Related papers
- SSSUMO: Real-Time Semi-Supervised Submovement Decomposition [0.6499759302108926]
Submovement analysis offers valuable insights into motor control.<n>Existing methods struggle with reconstruction accuracy, computational cost, and validation.<n>We address these challenges using a semi-supervised learning framework.
arXiv Detail & Related papers (2025-07-08T21:26:25Z) - Hybrid Neural-MPM for Interactive Fluid Simulations in Real-Time [57.30651532625017]
We present a novel hybrid method that integrates numerical simulation, neural physics, and generative control.<n>Our system demonstrates robust performance across diverse 2D/3D scenarios, material types, and obstacle interactions.<n>We promise to release both models and data upon acceptance.
arXiv Detail & Related papers (2025-05-25T01:27:18Z) - Learning Quadruped Locomotion Using Differentiable Simulation [31.80380408663424]
Differentiable simulation promises fast convergence and stable training.
This work proposes a new differentiable simulation framework to overcome these challenges.
Our framework enables learning quadruped walking in simulation in minutes without parallelization.
arXiv Detail & Related papers (2024-03-21T22:18:59Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - FluidLab: A Differentiable Environment for Benchmarking Complex Fluid
Manipulation [80.63838153351804]
We introduce FluidLab, a simulation environment with a diverse set of manipulation tasks involving complex fluid dynamics.
At the heart of our platform is a fully differentiable physics simulator, providing GPU-accelerated simulations and gradient calculations.
We propose several domain-specific optimization schemes coupled with differentiable physics.
arXiv Detail & Related papers (2023-03-04T07:24:22Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
We present a differentiable simulator and a new policy learning algorithm (SHAC)
Our algorithm alleviates problems with local minima through a smooth critic function.
We show substantial improvements in sample efficiency and wall-clock time over state-of-the-art RL and differentiable simulation-based algorithms.
arXiv Detail & Related papers (2022-04-14T17:46:26Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable
Physics [89.81550748680245]
We introduce a new differentiable physics benchmark called PasticineLab.
In each task, the agent uses manipulators to deform the plasticine into the desired configuration.
We evaluate several existing reinforcement learning (RL) methods and gradient-based methods on this benchmark.
arXiv Detail & Related papers (2021-04-07T17:59:23Z) - AP-MTL: Attention Pruned Multi-task Learning Model for Real-time
Instrument Detection and Segmentation in Robot-assisted Surgery [23.33984309289549]
Training a real-time robotic system for the detection and segmentation of high-resolution images provides a challenging problem with the limited computational resource.
We develop a novel end-to-end trainable real-time Multi-Task Learning model with weight-shared encoder and task-aware detection and segmentation decoders.
Our model significantly outperforms state-of-the-art segmentation and detection models, including best-performed models in the challenge.
arXiv Detail & Related papers (2020-03-10T14:24:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.