SafeMobile: Chain-level Jailbreak Detection and Automated Evaluation for Multimodal Mobile Agents
- URL: http://arxiv.org/abs/2507.00841v1
- Date: Tue, 01 Jul 2025 15:10:00 GMT
- Title: SafeMobile: Chain-level Jailbreak Detection and Automated Evaluation for Multimodal Mobile Agents
- Authors: Siyuan Liang, Tianmeng Fang, Zhe Liu, Aishan Liu, Yan Xiao, Jinyuan He, Ee-Chien Chang, Xiaochun Cao,
- Abstract summary: This work explores the security issues surrounding mobile multimodal agents.<n>It attempts to construct a risk discrimination mechanism by incorporating behavioral sequence information.<n>It also designs an automated assisted assessment scheme based on a large language model.
- Score: 58.21223208538351
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the wide application of multimodal foundation models in intelligent agent systems, scenarios such as mobile device control, intelligent assistant interaction, and multimodal task execution are gradually relying on such large model-driven agents. However, the related systems are also increasingly exposed to potential jailbreak risks. Attackers may induce the agents to bypass the original behavioral constraints through specific inputs, and then trigger certain risky and sensitive operations, such as modifying settings, executing unauthorized commands, or impersonating user identities, which brings new challenges to system security. Existing security measures for intelligent agents still have limitations when facing complex interactions, especially in detecting potentially risky behaviors across multiple rounds of conversations or sequences of tasks. In addition, an efficient and consistent automated methodology to assist in assessing and determining the impact of such risks is currently lacking. This work explores the security issues surrounding mobile multimodal agents, attempts to construct a risk discrimination mechanism by incorporating behavioral sequence information, and designs an automated assisted assessment scheme based on a large language model. Through preliminary validation in several representative high-risk tasks, the results show that the method can improve the recognition of risky behaviors to some extent and assist in reducing the probability of agents being jailbroken. We hope that this study can provide some valuable references for the security risk modeling and protection of multimodal intelligent agent systems.
Related papers
- Towards Unifying Quantitative Security Benchmarking for Multi Agent Systems [0.0]
Evolving AI systems increasingly deploy multi-agent architectures where autonomous agents collaborate, share information, and delegate tasks through developing protocols.<n>One such risk is a cascading risk: a breach in one agent can cascade through the system, compromising others by exploiting inter-agent trust.<n>In an ACI attack, a malicious input or tool exploit injected at one agent leads to cascading compromises and amplified downstream effects across agents that trust its outputs.
arXiv Detail & Related papers (2025-07-23T13:51:28Z) - OpenAgentSafety: A Comprehensive Framework for Evaluating Real-World AI Agent Safety [58.201189860217724]
We introduce OpenAgentSafety, a comprehensive framework for evaluating agent behavior across eight critical risk categories.<n>Unlike prior work, our framework evaluates agents that interact with real tools, including web browsers, code execution environments, file systems, bash shells, and messaging platforms.<n>It combines rule-based analysis with LLM-as-judge assessments to detect both overt and subtle unsafe behaviors.
arXiv Detail & Related papers (2025-07-08T16:18:54Z) - SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models [8.912091484067508]
We introduce SV-LLM, a novel multi-agent assistant system designed to automate and enhance system-on-chip (SoC) security verification.<n>By integrating specialized agents for tasks like verification question answering, security asset identification, threat modeling, test plan and property generation, vulnerability detection, and simulation-based bug validation, SV-LLM streamlines the workflow.<n>The system aims to reduce manual intervention, improve accuracy, and accelerate security analysis, supporting proactive identification and mitigation of risks early in the design cycle.
arXiv Detail & Related papers (2025-06-25T13:31:13Z) - Kaleidoscopic Teaming in Multi Agent Simulations [75.47388708240042]
We argue that existing red teaming or safety evaluation frameworks fall short in evaluating safety risks in complex behaviors, thought processes and actions taken by agents.<n>We introduce new in-context optimization techniques that can be used in our kaleidoscopic teaming framework to generate better scenarios for safety analysis.<n>We present appropriate metrics that can be used along with our framework to measure safety of agents.
arXiv Detail & Related papers (2025-06-20T23:37:17Z) - Demonstrations of Integrity Attacks in Multi-Agent Systems [7.640342064257848]
Multi-Agent Systems (MAS) could be vulnerable to malicious agents that exploit the system to serve self-interests without disrupting its core functionality.<n>This work explores integrity attacks where malicious agents employ subtle prompt manipulation to bias MAS operations and gain various benefits.
arXiv Detail & Related papers (2025-06-05T02:44:49Z) - Guardians of the Agentic System: Preventing Many Shots Jailbreak with Agentic System [0.8136541584281987]
This work uses three examination methods to detect rogue agents through a Reverse Turing Test and analyze deceptive alignment through multi-agent simulations.<n>We develop an anti-jailbreaking system by testing it with GEMINI 1.5 pro and llama-3.3-70B, deepseek r1 models.<n>The detection capabilities are strong such as 94% accuracy for GEMINI 1.5 pro yet the system suffers persistent vulnerabilities when under long attacks.
arXiv Detail & Related papers (2025-02-23T23:35:15Z) - Multi-Agent Risks from Advanced AI [90.74347101431474]
Multi-agent systems of advanced AI pose novel and under-explored risks.<n>We identify three key failure modes based on agents' incentives, as well as seven key risk factors.<n>We highlight several important instances of each risk, as well as promising directions to help mitigate them.
arXiv Detail & Related papers (2025-02-19T23:03:21Z) - AGrail: A Lifelong Agent Guardrail with Effective and Adaptive Safety Detection [47.83354878065321]
We propose AGrail, a lifelong guardrail to enhance agent safety.<n>AGrail features adaptive safety check generation, effective safety check optimization, and tool compatibility and flexibility.
arXiv Detail & Related papers (2025-02-17T05:12:33Z) - PsySafe: A Comprehensive Framework for Psychological-based Attack, Defense, and Evaluation of Multi-agent System Safety [70.84902425123406]
Multi-agent systems, when enhanced with Large Language Models (LLMs), exhibit profound capabilities in collective intelligence.
However, the potential misuse of this intelligence for malicious purposes presents significant risks.
We propose a framework (PsySafe) grounded in agent psychology, focusing on identifying how dark personality traits in agents can lead to risky behaviors.
Our experiments reveal several intriguing phenomena, such as the collective dangerous behaviors among agents, agents' self-reflection when engaging in dangerous behavior, and the correlation between agents' psychological assessments and dangerous behaviors.
arXiv Detail & Related papers (2024-01-22T12:11:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.