論文の概要: Embedding-based Retrieval in Multimodal Content Moderation
- arxiv url: http://arxiv.org/abs/2507.01066v1
- Date: Mon, 30 Jun 2025 19:11:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:59.828915
- Title: Embedding-based Retrieval in Multimodal Content Moderation
- Title(参考訳): 多モードコンテンツモデレーションにおける埋め込みに基づく検索
- Authors: Hanzhong Liang, Jinghao Shi, Xiang Shen, Zixuan Wang, Vera Wen, Ardalan Mehrani, Zhiqian Chen, Yifan Wu, Zhixin Zhang,
- Abstract要約: 従来の分類手法を補完するために, 埋め込み型検索法(EBR)を提案する。
EBRはアクションレートを10.32%引き上げ、運用コストを80%以上削減し、解釈可能性と柔軟性を向上させる。
- 参考スコア(独自算出の注目度): 20.899256623912933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video understanding plays a fundamental role for content moderation on short video platforms, enabling the detection of inappropriate content. While classification remains the dominant approach for content moderation, it often struggles in scenarios requiring rapid and cost-efficient responses, such as trend adaptation and urgent escalations. To address this issue, we introduce an Embedding-Based Retrieval (EBR) method designed to complement traditional classification approaches. We first leverage a Supervised Contrastive Learning (SCL) framework to train a suite of foundation embedding models, including both single-modal and multi-modal architectures. Our models demonstrate superior performance over established contrastive learning methods such as CLIP and MoCo. Building on these embedding models, we design and implement the embedding-based retrieval system that integrates embedding generation and video retrieval to enable efficient and effective trend handling. Comprehensive offline experiments on 25 diverse emerging trends show that EBR improves ROC-AUC from 0.85 to 0.99 and PR-AUC from 0.35 to 0.95. Further online experiments reveal that EBR increases action rates by 10.32% and reduces operational costs by over 80%, while also enhancing interpretability and flexibility compared to classification-based solutions.
- Abstract(参考訳): ビデオ理解は、短いビデオプラットフォームにおけるコンテンツモデレーションの基本的な役割を担い、不適切なコンテンツの検出を可能にする。
分類は依然としてコンテンツモデレーションの主要なアプローチであるが、傾向適応や急激なエスカレーションといった、迅速かつコスト効率のよい応答を必要とするシナリオでは、しばしば苦労する。
この問題に対処するために,従来の分類手法を補完するEmbedding-Based Retrieval(EBR)手法を提案する。
最初に、Supervised Contrastive Learning (SCL)フレームワークを利用して、単一のモダルアーキテクチャとマルチモダルアーキテクチャの両方を含む、基礎的な埋め込みモデルのスイートをトレーニングします。
提案モデルは,CLIPやMoCoといった既存のコントラスト学習手法よりも優れた性能を示す。
これらの埋め込みモデルに基づいて,埋め込み生成とビデオ検索を統合し,効率的なトレンド処理を実現する組込み型検索システムの設計と実装を行う。
25の多様な新興トレンドに関する総合的なオフライン実験は、ECRがROC-AUCを0.85から0.99に改善し、PR-AUCを0.35から0.95に改善していることを示している。
さらなるオンライン実験では、ERRはアクションレートを10.32%増加させ、運用コストを80%以上削減し、また、分類ベースのソリューションと比較して解釈可能性と柔軟性を向上させる。
関連論文リスト
- RecLLM-R1: A Two-Stage Training Paradigm with Reinforcement Learning and Chain-of-Thought v1 [20.92548890511589]
本稿では,Large Language Models(LLM)を利用したレコメンデーションフレームワークであるRecLLM-R1を紹介する。
RecLLM-R1は、精度、多様性、新規性など、さまざまな評価指標において、既存のベースラインメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2025-06-24T01:39:34Z) - Enhancing CTR Prediction with De-correlated Expert Networks [53.05653547330796]
本稿では,専門的相関を最小化するクロスエキスパートデコレーショナル・デコレーショナル・デコレーショナル・デコレーショナル・デコレーショナル・デコレーショナル・デコレーショナル・デコレーショナル・デコレーショナル・デコレーショナル・デコレーショナル・デコレーショナル・デコレーショナル・デコレーショナル・デコレーショナル・デコレーショナル・デコレーショナル・デコレーショナル・デコレーショナル・デコレーショナル・デコレーショナル・デコレーショナル・
D-MoEの有効性とデコリレーション原理を検証するために大規模な実験が行われた。
論文 参考訳(メタデータ) (2025-05-23T14:04:38Z) - Offline Learning for Combinatorial Multi-armed Bandits [56.96242764723241]
Off-CMABはCMABの最初のオフライン学習フレームワークである。
Off-CMABは悲観的な報酬推定と解法を組み合わせる。
合成および実世界のデータセットの実験は、CLCBの優れた性能を強調している。
論文 参考訳(メタデータ) (2025-01-31T16:56:18Z) - LOLA: LLM-Assisted Online Learning Algorithm for Content Experiments [2.2021543101231167]
現代のメディア企業は、ユーザーにとって最も魅力的で魅力的なコンテンツを特定するために、自動化され効率的な方法を必要としている。
本稿ではまず,3つの純LLM手法を用いて,最もキャッチラインを識別する能力について検討する。
LLM-Assisted Online Learning Algorithm (LOLA) は,Large Language Models (LLM) と適応実験を統合し,コンテンツ配信を最適化する新しいフレームワークである。
論文 参考訳(メタデータ) (2024-06-03T07:56:58Z) - Relaxed Contrastive Learning for Federated Learning [48.96253206661268]
本稿では,フェデレート学習におけるデータ不均一性の課題に対処する,新しいコントラスト学習フレームワークを提案する。
当社のフレームワークは,既存のフェデレート学習アプローチを,標準ベンチマークにおいて大きなマージンで上回ります。
論文 参考訳(メタデータ) (2024-01-10T04:55:24Z) - Dynamic Sub-graph Distillation for Robust Semi-supervised Continual Learning [47.64252639582435]
半教師付き連続学習(SSCL)に焦点をあて、そのモデルが未知のカテゴリを持つ部分ラベル付きデータから徐々に学習する。
半教師付き連続学習のための動的サブグラフ蒸留法(DSGD)を提案する。
論文 参考訳(メタデータ) (2023-12-27T04:40:12Z) - Sample Less, Learn More: Efficient Action Recognition via Frame Feature
Restoration [59.6021678234829]
本稿では,2つのスパースサンプリングおよび隣接するビデオフレームの中間特徴を復元する新しい手法を提案する。
提案手法の統合により, 一般的な3つのベースラインの効率は50%以上向上し, 認識精度は0.5%低下した。
論文 参考訳(メタデータ) (2023-07-27T13:52:42Z) - Cross-Stream Contrastive Learning for Self-Supervised Skeleton-Based
Action Recognition [22.067143671631303]
自己教師型骨格に基づく行動認識は、対照的な学習の発展とともに急速に成長する。
骨格に基づく行動表現学習(CSCLR)のためのクロスストリームコントラスト学習フレームワークを提案する。
具体的には、CSCLRはストリーム内コントラストペアを利用するだけでなく、ストリーム間コントラストペアをハードサンプルとして導入し、より良い表現学習を定式化する。
論文 参考訳(メタデータ) (2023-05-03T10:31:35Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
オンライン連続学習(OCL)は、非定常データストリームからモデル学習を可能とし、新たな知識を継続的に獲得し、学習した知識を維持することを目的としている。
主な課題は、"破滅的な忘れる"問題、すなわち、新しい知識を学習しながら学習した知識を十分に記憶できないことにある。
論文 参考訳(メタデータ) (2022-11-10T05:29:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。