論文の概要: yProv4ML: Effortless Provenance Tracking for Machine Learning Systems
- arxiv url: http://arxiv.org/abs/2507.01078v1
- Date: Tue, 01 Jul 2025 14:59:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:59.84044
- Title: yProv4ML: Effortless Provenance Tracking for Machine Learning Systems
- Title(参考訳): yProv4ML: 機械学習システムのための不運な前兆追跡
- Authors: Gabriele Padovani, Valentine Anantharaj, Sandro Fiore,
- Abstract要約: 大規模言語モデル(LLM)への関心の急速な高まりは、開発が追求される透明性と厳密さの欠如を浮き彫りにした。
本稿では,PROV-JSONフォーマットで機械学習プロセス中に生成した出典情報をキャプチャするフレームワークであるyProv4MLを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid growth of interest in large language models (LLMs) reflects their potential for flexibility and generalization, and attracted the attention of a diverse range of researchers. However, the advent of these techniques has also brought to light the lack of transparency and rigor with which development is pursued. In particular, the inability to determine the number of epochs and other hyperparameters in advance presents challenges in identifying the best model. To address this challenge, machine learning frameworks such as MLFlow can automate the collection of this type of information. However, these tools capture data using proprietary formats and pose little attention to lineage. This paper proposes yProv4ML, a framework to capture provenance information generated during machine learning processes in PROV-JSON format, with minimal code modifications.
- Abstract(参考訳): 大規模言語モデル(LLM)への関心の急速な高まりは、柔軟性と一般化の可能性を反映しており、様々な研究者の注目を集めている。
しかし、これらの手法の出現は、開発が追求される透明性と厳密さの欠如にも光を当てている。
特に、事前にエポックや他のハイパーパラメータの数を決定することができないことは、最良のモデルを特定する上での課題である。
この課題に対処するため、MLFlowのような機械学習フレームワークは、この種の情報の収集を自動化することができる。
しかし、これらのツールはプロプライエタリなフォーマットを使ってデータをキャプチャし、系統にはほとんど注意を向けない。
本稿では,PROV-JSONフォーマットで機械学習処理中に生成した証明情報を最小限のコード修正でキャプチャするフレームワークyProv4MLを提案する。
関連論文リスト
- Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [52.03511469562013]
3つのコアコンポーネントで構成されるICU(Iterative Contrastive Unlearning)フレームワークを紹介する。
知識未学習誘導モジュールは、未学習の損失を使用して、特定の知識を除去するためにターゲットとする。
Contrastive Learning Enhancementモジュールは、純粋な未学習の目標に対してモデルの表現力を保持する。
イテレーティブ・アンラーニング・リファインメントモジュールは、進行中の評価と更新を通じて、アンラーニングプロセスを動的に調整する。
論文 参考訳(メタデータ) (2024-07-25T07:09:35Z) - Dynamic and Adaptive Feature Generation with LLM [10.142660254703225]
本稿では,特徴生成プロセスの解釈可能性を高める動的かつ適応的な特徴生成手法を提案する。
弊社のアプローチは、さまざまなデータタイプやタスクにまたがって適用性を広げ、戦略的柔軟性よりもアドバンテージを提供する。
論文 参考訳(メタデータ) (2024-06-04T20:32:14Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Robust Machine Learning by Transforming and Augmenting Imperfect
Training Data [6.928276018602774]
この論文は、現代の機械学習のいくつかのデータ感度を探求する。
まず、トレーニングデータで測定された事前の人間の識別をMLが符号化するのを防ぐ方法について論じる。
次に、トレーニング中に予測忠実度を提供するが、デプロイ時に信頼性が低い突発的特徴を含むデータから学習する問題について論じる。
論文 参考訳(メタデータ) (2023-12-19T20:49:28Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
時系列データは、研究者と産業組織間のデータの共有を妨げるため、しばしば不足または非常に敏感である。
本稿では,合成時系列の生成モデリングのためのオープンソースフレームワークである時系列生成モデリング(TSGM)を紹介する。
論文 参考訳(メタデータ) (2023-05-19T10:11:21Z) - Learn to Unlearn: A Survey on Machine Unlearning [29.077334665555316]
本稿では,最近の機械学習技術,検証機構,潜在的攻撃について概説する。
新たな課題と今後の研究方向性を強調します。
本稿では、プライバシ、エクイティ、レジリエンスをMLシステムに統合するための貴重なリソースの提供を目的としている。
論文 参考訳(メタデータ) (2023-05-12T14:28:02Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
本稿では、最先端のオープンソースAutoMLツールを調査し、ストリームから収集したデータに適用し、時間とともにパフォーマンスがどのように変化するかを測定する。
この結果から,既製のAutoMLツールで十分な結果が得られることが示されたが,概念ドリフトや検出,適応といった手法が適用されれば,予測精度を時間とともに維持することが可能になる。
論文 参考訳(メタデータ) (2021-06-14T11:42:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。