Escaping Plato's Cave: JAM for Aligning Independently Trained Vision and Language Models
- URL: http://arxiv.org/abs/2507.01201v4
- Date: Wed, 16 Jul 2025 21:17:46 GMT
- Title: Escaping Plato's Cave: JAM for Aligning Independently Trained Vision and Language Models
- Authors: Lauren Hyoseo Yoon, Yisong Yue, Been Kim,
- Abstract summary: We introduce a framework that trains modality-specific autoencoders on latent representations of single modality models.<n>By analogy, this framework serves as a method to escape Plato's Cave, enabling the emergence of shared structure from disjoint inputs.
- Score: 29.59537209390697
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Independently trained vision and language models inhabit disjoint representational spaces, shaped by their respective modalities, objectives, and architectures. Yet an emerging hypothesis - the Platonic Representation Hypothesis - suggests that such models may nonetheless converge toward a shared statistical model of reality. This compatibility, if it exists, raises a fundamental question: can we move beyond post-hoc statistical detection of alignment and explicitly optimize for it between such disjoint representations? We cast this Platonic alignment problem as a multi-objective optimization task - preserve each modality's native structure while aligning for mutual coherence. We introduce the Joint Autoencoder Modulator (JAM) framework that jointly trains modality-specific autoencoders on the latent representations of pre-trained single modality models, encouraging alignment through both reconstruction and cross-modal objectives. By analogy, this framework serves as a method to escape Plato's Cave, enabling the emergence of shared structure from disjoint inputs. We evaluate this framework across three critical design axes: (i) the alignment objective - comparing contrastive loss (Con), its hard-negative variant (NegCon), and our Spread loss, (ii) the layer depth at which alignment is most effective, and (iii) the impact of foundation model scale on representational convergence. Our findings show that our lightweight Pareto-efficient framework reliably induces alignment, even across frozen, independently trained representations, offering both theoretical insight and practical pathways for transforming generalist unimodal foundations into specialist multimodal models.
Related papers
- Interpretable Few-Shot Image Classification via Prototypical Concept-Guided Mixture of LoRA Experts [79.18608192761512]
Self-Explainable Models (SEMs) rely on Prototypical Concept Learning (PCL) to enable their visual recognition processes more interpretable.<n>We propose a Few-Shot Prototypical Concept Classification framework that mitigates two key challenges under low-data regimes: parametric imbalance and representation misalignment.<n>Our approach consistently outperforms existing SEMs by a notable margin, with 4.2%-8.7% relative gains in 5-way 5-shot classification.
arXiv Detail & Related papers (2025-06-05T06:39:43Z) - Discrete Markov Bridge [93.64996843697278]
We propose a novel framework specifically designed for discrete representation learning, called Discrete Markov Bridge.<n>Our approach is built upon two key components: Matrix Learning and Score Learning.
arXiv Detail & Related papers (2025-05-26T09:32:12Z) - Relative Overfitting and Accept-Reject Framework [5.465098504510676]
We propose an ensemble framework that governs how models are segmented to ensure performance improvement.<n>We detail the patterns of this framework within the domain of NLP and briefly describe its to other fields, such as computer vision (CV) and AI for science.
arXiv Detail & Related papers (2025-05-12T17:36:14Z) - SARA: Structural and Adversarial Representation Alignment for Training-efficient Diffusion Models [12.26595705520937]
We introduce SARA, a hierarchical alignment framework that enforces multi-level representation constraints.<n>Experiments on ImageNet-256 show that SARA achieves an FID of 1.36 while converging twice as fast as REPA, surpassing recent state-of-the-art image generation methods.
arXiv Detail & Related papers (2025-03-11T10:17:32Z) - JADE: Joint-aware Latent Diffusion for 3D Human Generative Modeling [62.77347895550087]
We introduce JADE, a generative framework that learns the variations of human shapes with fined-grained control.<n>Our key insight is a joint-aware latent representation that decomposes human bodies into skeleton structures.<n>To generate coherent and plausible human shapes under our proposed decomposition, we also present a cascaded pipeline.
arXiv Detail & Related papers (2024-12-29T14:18:35Z) - Latent Functional Maps: a spectral framework for representation alignment [34.20582953800544]
We introduce a multi-purpose framework to the representation learning community, which allows to: (i) compare different spaces in an interpretable way and measure their intrinsic similarity; (ii) find correspondences between them, both in unsupervised and weakly supervised settings, and (iii) to effectively transfer representations between distinct spaces.
We validate our framework on various applications, ranging from stitching to retrieval tasks, and on multiple modalities, demonstrating that Latent Functional Maps can serve as a swiss-army knife for representation alignment.
arXiv Detail & Related papers (2024-06-20T10:43:28Z) - Understanding and Constructing Latent Modality Structures in Multi-modal
Representation Learning [53.68371566336254]
We argue that the key to better performance lies in meaningful latent modality structures instead of perfect modality alignment.
Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization.
arXiv Detail & Related papers (2023-03-10T14:38:49Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - Learning Relation Alignment for Calibrated Cross-modal Retrieval [52.760541762871505]
We propose a novel metric, Intra-modal Self-attention Distance (ISD), to quantify the relation consistency by measuring the semantic distance between linguistic and visual relations.
We present Inter-modal Alignment on Intra-modal Self-attentions (IAIS), a regularized training method to optimize the ISD and calibrate intra-modal self-attentions mutually via inter-modal alignment.
arXiv Detail & Related papers (2021-05-28T14:25:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.