Capacity Planning and Scheduling for Jobs with Uncertainty in Resource Usage and Duration
- URL: http://arxiv.org/abs/2507.01225v2
- Date: Mon, 21 Jul 2025 18:56:31 GMT
- Title: Capacity Planning and Scheduling for Jobs with Uncertainty in Resource Usage and Duration
- Authors: Sunandita Patra, Mehtab Pathan, Mahmoud Mahfouz, Parisa Zehtabi, Wided Ouaja, Daniele Magazzeni, Manuela Veloso,
- Abstract summary: This work is to perform capacity planning, estimate resource requirements, and job scheduling for on-prem grid computing environments.<n>A key contribution of our approach is handling uncertainty in both resource usage and duration of the jobs.<n>We propose approximate approaches using deterministic estimators and pair sampling-based constraint programming.
- Score: 11.232441969983672
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Organizations around the world schedule jobs (programs) regularly to perform various tasks dictated by their end users. With the major movement towards using a cloud computing infrastructure, our organization follows a hybrid approach with both cloud and on-prem servers. The objective of this work is to perform capacity planning, i.e., estimate resource requirements, and job scheduling for on-prem grid computing environments. A key contribution of our approach is handling uncertainty in both resource usage and duration of the jobs, a critical aspect in the finance industry where stochastic market conditions significantly influence job characteristics. For capacity planning and scheduling, we simultaneously balance two conflicting objectives: (a) minimize resource usage, and (b) provide high quality-of-service to the end users by completing jobs by their requested deadlines. We propose approximate approaches using deterministic estimators and pair sampling-based constraint programming. Our best approach (pair sampling-based) achieves much lower peak resource usage compared to manual scheduling without compromising on the quality-of-service.
Related papers
- Semantic Scheduling for LLM Inference [48.19648297172146]
We introduce the concept of semantic scheduling in scheduling of requests from large language models (LLM)<n>We present a novel scheduling algorithm with optimal time complexity, designed to minimize the overall waiting time in LLM-based prompt scheduling.
arXiv Detail & Related papers (2025-06-13T20:15:58Z) - An Advanced Reinforcement Learning Framework for Online Scheduling of Deferrable Workloads in Cloud Computing [37.457951933256055]
We propose an online deferrable job scheduling method called textitOnline Scheduling for DEferrable jobs in Cloud (OSDEC), where a deep reinforcement learning model is adopted to learn the scheduling policy.
The proposed method can well plan the deployment schedule and achieve a short waiting time for users while maintaining a high resource utilization for the platform.
arXiv Detail & Related papers (2024-06-03T06:55:26Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
We consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints.
Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration.
arXiv Detail & Related papers (2023-05-02T07:41:16Z) - Job Scheduling in Datacenters using Constraint Controlled RL [0.0]
We apply Proportional-Integral-Derivative (PID) Lagrangian methods in Deep Reinforcement Learning to job scheduling problem in the green datacenter environment.
Experiments demonstrate improved performance compared to scheduling policies without the PID Lagrangian methods.
arXiv Detail & Related papers (2022-11-10T04:43:14Z) - MetaNet: Automated Dynamic Selection of Scheduling Policies in Cloud
Environments [13.864161788250856]
This work aims to solve the non-trivial meta problem of online dynamic selection of a scheduling policy using a surrogate model called MetaNet.
Compared to state-of-the-art DNN schedulers, this allows for improvement in execution costs, energy consumption, response time and service level agreement violations by up to 11, 43, 8 and 13 percent, respectively.
arXiv Detail & Related papers (2022-05-21T16:51:51Z) - Innovations in the field of on-board scheduling technologies [64.41511459132334]
This paper proposes an onboard scheduler, that integrates inside an onboard software framework for mission autonomy.
The scheduler is based on linear integer programming and relies on the use of a branch-and-cut solver.
The technology has been tested on an Earth Observation scenario, comparing its performance against the state-of-the-art scheduling technology.
arXiv Detail & Related papers (2022-05-04T12:00:49Z) - MCDS: AI Augmented Workflow Scheduling in Mobile Edge Cloud Computing
Systems [12.215537834860699]
Recently proposed scheduling methods leverage the low response times of edge computing platforms to optimize application Quality of Service (QoS)
We propose MCDS: Monte Carlo Learning using Deep Surrogate Models to efficiently schedule workflow applications in mobile edge-cloud computing systems.
arXiv Detail & Related papers (2021-12-14T10:00:01Z) - Meta-learning with an Adaptive Task Scheduler [93.63502984214918]
Existing meta-learning algorithms randomly sample meta-training tasks with a uniform probability.
It is likely that tasks are detrimental with noise or imbalanced given a limited number of meta-training tasks.
We propose an adaptive task scheduler (ATS) for the meta-training process.
arXiv Detail & Related papers (2021-10-26T22:16:35Z) - Should We Be Pre-training? An Argument for End-task Aware Training as an
Alternative [88.11465517304515]
In general, the pre-training step relies on little to no direct knowledge of the task on which the model will be fine-tuned.
We show that multi-tasking the end-task and auxiliary objectives results in significantly better downstream task performance.
arXiv Detail & Related papers (2021-09-15T17:13:18Z) - A Predictive Autoscaler for Elastic Batch Jobs [8.354712625979776]
Large batch jobs such as Deep Learning, HPC and Spark require far more computational resources and higher cost than conventional online service.
We propose a predictive autoscaler to provide an elastic interface for the customers and overprovision instances.
arXiv Detail & Related papers (2020-10-10T17:35:55Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.