DARTS: A Dual-View Attack Framework for Targeted Manipulation in Federated Sequential Recommendation
- URL: http://arxiv.org/abs/2507.01383v1
- Date: Wed, 02 Jul 2025 05:57:09 GMT
- Title: DARTS: A Dual-View Attack Framework for Targeted Manipulation in Federated Sequential Recommendation
- Authors: Qitao Qin, Yucong Luo, Zhibo Chu,
- Abstract summary: Federated recommendation (FedRec) preserves user privacy by enabling decentralized training of personalized models, but this architecture is inherently vulnerable to adversarial attacks.<n>We propose a novel dualview attack framework, named DV-FSR, which combines a sampling-based explicit strategy with a contrastive learning-based implicit gradient strategy to orchestrate a coordinated attack.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated recommendation (FedRec) preserves user privacy by enabling decentralized training of personalized models, but this architecture is inherently vulnerable to adversarial attacks. Significant research has been conducted on targeted attacks in FedRec systems, motivated by commercial and social influence considerations. However, much of this work has largely overlooked the differential robustness of recommendation models. Moreover, our empirical findings indicate that existing targeted attack methods achieve only limited effectiveness in Federated Sequential Recommendation(FSR) tasks. Driven by these observations, we focus on investigating targeted attacks in FSR and propose a novel dualview attack framework, named DV-FSR. This attack method uniquely combines a sampling-based explicit strategy with a contrastive learning-based implicit gradient strategy to orchestrate a coordinated attack. Additionally, we introduce a specific defense mechanism tailored for targeted attacks in FSR, aiming to evaluate the mitigation effects of the attack method we proposed. Extensive experiments validate the effectiveness of our proposed approach on representative sequential models. Our codes are publicly available.
Related papers
- Explainer-guided Targeted Adversarial Attacks against Binary Code Similarity Detection Models [12.524811181751577]
We propose a novel optimization for adversarial attacks against BCSD models.<n>In particular, we aim to improve the attacks in a challenging scenario, where the attack goal is to limit the model predictions to a specific range.<n>Our attack leverages the superior capability of black-box, model-agnostic explainers in interpreting the model decision boundaries.
arXiv Detail & Related papers (2025-06-05T08:29:19Z) - The Silent Saboteur: Imperceptible Adversarial Attacks against Black-Box Retrieval-Augmented Generation Systems [101.68501850486179]
We explore adversarial attacks against retrieval-augmented generation (RAG) systems to identify their vulnerabilities.<n>This task aims to find imperceptible perturbations that retrieve a target document, originally excluded from the initial top-$k$ candidate set.<n>We propose ReGENT, a reinforcement learning-based framework that tracks interactions between the attacker and the target RAG.
arXiv Detail & Related papers (2025-05-24T08:19:25Z) - DV-FSR: A Dual-View Target Attack Framework for Federated Sequential Recommendation [4.980393474423609]
Federated recommendation (FedRec) preserves user privacy by enabling decentralized training of personalized models, but this architecture is inherently vulnerable to adversarial attacks.<n>We propose a novel dualview attack framework, named DV-FSR, which combines a sampling-based explicit strategy with a contrastive learning-based implicit gradient strategy to orchestrate a coordinated attack.
arXiv Detail & Related papers (2024-09-10T15:24:13Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Raccoon: Prompt Extraction Benchmark of LLM-Integrated Applications [8.51254190797079]
We introduce the Raccoon benchmark which comprehensively evaluates a model's susceptibility to prompt extraction attacks.
Our novel evaluation method assesses models under both defenseless and defended scenarios.
Our findings highlight universal susceptibility to prompt theft in the absence of defenses, with OpenAI models demonstrating notable resilience when protected.
arXiv Detail & Related papers (2024-06-10T18:57:22Z) - Securing Recommender System via Cooperative Training [78.97620275467733]
We propose a general framework, Triple Cooperative Defense (TCD), which employs three cooperative models that mutually enhance data.
Considering existing attacks struggle to balance bi-level optimization and efficiency, we revisit poisoning attacks in recommender systems.
We put forth a Game-based Co-training Attack (GCoAttack), which frames the proposed CoAttack and TCD as a game-theoretic process.
arXiv Detail & Related papers (2024-01-23T12:07:20Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - DALA: A Distribution-Aware LoRA-Based Adversarial Attack against
Language Models [64.79319733514266]
Adversarial attacks can introduce subtle perturbations to input data.
Recent attack methods can achieve a relatively high attack success rate (ASR)
We propose a Distribution-Aware LoRA-based Adversarial Attack (DALA) method.
arXiv Detail & Related papers (2023-11-14T23:43:47Z) - Object-fabrication Targeted Attack for Object Detection [54.10697546734503]
adversarial attack for object detection contains targeted attack and untargeted attack.
New object-fabrication targeted attack mode can mislead detectors tofabricate extra false objects with specific target labels.
arXiv Detail & Related papers (2022-12-13T08:42:39Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
We study a conceptually simple approach to defend few-shot classifiers against adversarial attacks.
We propose a simple attack-agnostic detection method, using the concept of self-similarity and filtering.
Our evaluation on the miniImagenet (MI) and CUB datasets exhibit good attack detection performance.
arXiv Detail & Related papers (2021-10-24T05:46:03Z) - Dynamic Defense Approach for Adversarial Robustness in Deep Neural
Networks via Stochastic Ensemble Smoothed Model [12.858728363390703]
This paper builds upon ensemble smoothing based on defense method of random smoothing and model ensemble.
It handles the extreme transferability and vulnerability of ensemble models under white-box attacks.
arXiv Detail & Related papers (2021-05-06T16:48:52Z) - Adversarial example generation with AdaBelief Optimizer and Crop
Invariance [8.404340557720436]
Adversarial attacks can be an important method to evaluate and select robust models in safety-critical applications.
We propose AdaBelief Iterative Fast Gradient Method (ABI-FGM) and Crop-Invariant attack Method (CIM) to improve the transferability of adversarial examples.
Our method has higher success rates than state-of-the-art gradient-based attack methods.
arXiv Detail & Related papers (2021-02-07T06:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.