Nonparametric learning of heterogeneous graphical model on network-linked data
- URL: http://arxiv.org/abs/2507.01473v1
- Date: Wed, 02 Jul 2025 08:37:15 GMT
- Title: Nonparametric learning of heterogeneous graphical model on network-linked data
- Authors: Yuwen Wang, Changyu Liu, Xin He, Junhui Wang,
- Abstract summary: This paper proposes a nonparametric graphical model that accommodates heterogeneous graph structures without imposing any distributional assumptions.<n>It transforms the graph learning task into solving a finite-dimensional linear equation system by leveraging the properties of vector-valued kernel Hilbert space.<n>Its effectiveness is also demonstrated through a variety of simulated examples and a real application to the statistician coauthorship dataset.
- Score: 19.215806260939473
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphical models have been popularly used for capturing conditional independence structure in multivariate data, which are often built upon independent and identically distributed observations, limiting their applicability to complex datasets such as network-linked data. This paper proposes a nonparametric graphical model that addresses these limitations by accommodating heterogeneous graph structures without imposing any specific distributional assumptions. The proposed estimation method effectively integrates network embedding with nonparametric graphical model estimation. It further transforms the graph learning task into solving a finite-dimensional linear equation system by leveraging the properties of vector-valued reproducing kernel Hilbert space. Moreover, theoretical guarantees are established for the proposed method in terms of the estimation consistency and exact recovery of the heterogeneous graph structures. Its effectiveness is also demonstrated through a variety of simulated examples and a real application to the statistician coauthorship dataset.
Related papers
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - Graph Structure Inference with BAM: Introducing the Bilinear Attention
Mechanism [31.99564199048314]
We propose a novel neural network model for supervised graph structure learning.
The model is trained with variably shaped and coupled input data.
Our method demonstrates robust generalizability across both linear and various types of non-linear dependencies.
arXiv Detail & Related papers (2024-02-12T15:48:58Z) - Cyclic Directed Probabilistic Graphical Model: A Proposal Based on
Structured Outcomes [0.0]
We describe a probabilistic graphical model - probabilistic relation network - that allows the direct capture of directional cyclic dependencies.
This model does not violate the probability axioms, and it supports learning from observed data.
Notably, it supports probabilistic inference, making it a prospective tool in data analysis and in expert and design-making applications.
arXiv Detail & Related papers (2023-10-25T10:19:03Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Learning non-Gaussian graphical models via Hessian scores and triangular
transport [6.308539010172309]
We propose an algorithm for learning the Markov structure of continuous and non-Gaussian distributions.
Our algorithm SING estimates the density using a deterministic coupling, induced by a triangular transport map, and iteratively exploits sparse structure in the map to reveal sparsity in the graph.
arXiv Detail & Related papers (2021-01-08T16:42:42Z) - Lossless Compression of Structured Convolutional Models via Lifting [14.63152363481139]
We introduce a simple and efficient technique to detect the symmetries and compress the neural models without loss of any information.
We demonstrate through experiments that such compression can lead to significant speedups of structured convolutional models.
arXiv Detail & Related papers (2020-07-13T08:02:27Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
We consider the bipartite graph and formalize its representation learning problem as a statistical estimation problem of parameters in a semiparametric exponential family distribution.
We show that the proposed objective is strongly convex in a neighborhood around the ground truth, so that a gradient descent-based method achieves linear convergence rate.
Our estimator is robust to any model misspecification within the exponential family, which is validated in extensive experiments.
arXiv Detail & Related papers (2020-03-02T16:40:36Z) - Understanding Graph Neural Networks with Generalized Geometric
Scattering Transforms [67.88675386638043]
The scattering transform is a multilayered wavelet-based deep learning architecture that acts as a model of convolutional neural networks.
We introduce windowed and non-windowed geometric scattering transforms for graphs based upon a very general class of asymmetric wavelets.
We show that these asymmetric graph scattering transforms have many of the same theoretical guarantees as their symmetric counterparts.
arXiv Detail & Related papers (2019-11-14T17:23:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.