Cyclic Directed Probabilistic Graphical Model: A Proposal Based on
Structured Outcomes
- URL: http://arxiv.org/abs/2310.16525v1
- Date: Wed, 25 Oct 2023 10:19:03 GMT
- Title: Cyclic Directed Probabilistic Graphical Model: A Proposal Based on
Structured Outcomes
- Authors: Oleksii Sirotkin
- Abstract summary: We describe a probabilistic graphical model - probabilistic relation network - that allows the direct capture of directional cyclic dependencies.
This model does not violate the probability axioms, and it supports learning from observed data.
Notably, it supports probabilistic inference, making it a prospective tool in data analysis and in expert and design-making applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the process of building (structural learning) a probabilistic graphical
model from a set of observed data, the directional, cyclic dependencies between
the random variables of the model are often found. Existing graphical models
such as Bayesian and Markov networks can reflect such dependencies. However,
this requires complicating those models, such as adding additional variables or
dividing the model graph into separate subgraphs. Herein, we describe a
probabilistic graphical model - probabilistic relation network - that allows
the direct capture of directional cyclic dependencies during structural
learning. This model is based on the simple idea that each sample of the
observed data can be represented by an arbitrary graph (structured outcome),
which reflects the structure of the dependencies of the variables included in
the sample. Each of the outcomes contains only a part of the graphical model
structure; however, a complete graph of the probabilistic model is obtained by
combining different outcomes. Such a graph, unlike Bayesian and Markov
networks, can be directed and can have cycles. We explored the full joint
distribution and conditional distribution and conditional independence
properties of variables in the proposed model. We defined the algorithms for
constructing of the model from the dataset and for calculating the conditional
and full joint distributions. We also performed a numerical comparison with
Bayesian and Markov networks. This model does not violate the probability
axioms, and it supports learning from observed data. Notably, it supports
probabilistic inference, making it a prospective tool in data analysis and in
expert and design-making applications.
Related papers
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Creating generalizable downstream graph models with random projections [22.690120515637854]
We investigate graph representation learning approaches that enable models to generalize across graphs.
We show that using random projections to estimate multiple powers of the transition matrix allows us to build a set of isomorphism-invariant features.
The resulting features can be used to recover enough information about the local neighborhood of a node to enable inference with relevance competitive to other approaches.
arXiv Detail & Related papers (2023-02-17T14:27:00Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Amortised Inference in Structured Generative Models with Explaining Away [16.92791301062903]
We extend the output of amortised variational inference to incorporate structured factors over multiple variables.
We show that appropriately parameterised factors can be combined efficiently with variational message passing in elaborate graphical structures.
We then fit the structured model to high-dimensional neural spiking time-series from the hippocampus of freely moving rodents.
arXiv Detail & Related papers (2022-09-12T12:52:15Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
In Bayesian structure learning, we are interested in inferring a distribution over the directed acyclic graph (DAG) from data.
Recently, a class of probabilistic models, called Generative Flow Networks (GFlowNets), have been introduced as a general framework for generative modeling.
We show that our approach, called DAG-GFlowNet, provides an accurate approximation of the posterior over DAGs.
arXiv Detail & Related papers (2022-02-28T15:53:10Z) - Learning non-Gaussian graphical models via Hessian scores and triangular
transport [6.308539010172309]
We propose an algorithm for learning the Markov structure of continuous and non-Gaussian distributions.
Our algorithm SING estimates the density using a deterministic coupling, induced by a triangular transport map, and iteratively exploits sparse structure in the map to reveal sparsity in the graph.
arXiv Detail & Related papers (2021-01-08T16:42:42Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
We present a novel Partial Feature Decorrelation Learning (PFDL) algorithm, which jointly optimize a feature decomposition network and the target image classification model.
The experiments on real-world datasets demonstrate that our method can improve the backbone model's accuracy on OOD image classification datasets.
arXiv Detail & Related papers (2020-07-30T05:48:48Z) - Tractably Modelling Dependence in Networks Beyond Exchangeability [0.0]
We study the estimation, clustering and degree behavior of the network in our setting.
This explores why and under which general conditions non-exchangeable network data can be described by a block model.
arXiv Detail & Related papers (2020-07-28T17:13:59Z) - Struct-MMSB: Mixed Membership Stochastic Blockmodels with Interpretable
Structured Priors [13.712395104755783]
Mixed membership blockmodel (MMSB) is a popular framework for community detection and network generation.
We present a flexible MMSB model, textitStruct-MMSB, that uses a recently developed statistical relational learning model, hinge-loss Markov random fields (HL-MRFs)
Our model is capable of learning latent characteristics in real-world networks via meaningful latent variables encoded as a complex combination of observed features and membership distributions.
arXiv Detail & Related papers (2020-02-21T19:32:32Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.