論文の概要: A Multi-Centric Anthropomorphic 3D CT Phantom-Based Benchmark Dataset for Harmonization
- arxiv url: http://arxiv.org/abs/2507.01539v1
- Date: Wed, 02 Jul 2025 09:47:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:23:00.136591
- Title: A Multi-Centric Anthropomorphic 3D CT Phantom-Based Benchmark Dataset for Harmonization
- Title(参考訳): 高調波のための多心性擬似3次元CTファントムベースベンチマークデータセット
- Authors: Mohammadreza Amirian, Michael Bach, Oscar Jimenez-del-Toro, Christoph Aberle, Roger Schaer, Vincent Andrearczyk, Jean-Félix Maestrati, Maria Martin Asiain, Kyriakos Flouris, Markus Obmann, Clarisse Dromain, Benoît Dufour, Pierre-Alexandre Alois Poletti, Hendrik von Tengg-Kobligk, Rolf Hügli, Martin Kretzschmar, Hatem Alkadhi, Ender Konukoglu, Henning Müller, Bram Stieltjes, Adrien Depeursinge,
- Abstract要約: 重要なデータ分散シフトは、スキャナー製造者、再構築技術、あるいは線量の変化によって引き起こされる。
本稿では,様々なスキャナと設定で得られた人為的ファントムのCTスキャンを含むオープンソースのベンチマークデータセットを提案する。
- 参考スコア(独自算出の注目度): 15.011978682878881
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) has introduced numerous opportunities for human assistance and task automation in medicine. However, it suffers from poor generalization in the presence of shifts in the data distribution. In the context of AI-based computed tomography (CT) analysis, significant data distribution shifts can be caused by changes in scanner manufacturer, reconstruction technique or dose. AI harmonization techniques can address this problem by reducing distribution shifts caused by various acquisition settings. This paper presents an open-source benchmark dataset containing CT scans of an anthropomorphic phantom acquired with various scanners and settings, which purpose is to foster the development of AI harmonization techniques. Using a phantom allows fixing variations attributed to inter- and intra-patient variations. The dataset includes 1378 image series acquired with 13 scanners from 4 manufacturers across 8 institutions using a harmonized protocol as well as several acquisition doses. Additionally, we present a methodology, baseline results and open-source code to assess image- and feature-level stability and liver tissue classification, promoting the development of AI harmonization strategies.
- Abstract(参考訳): 人工知能(AI)は、医療における人的援助とタスク自動化の機会を数多く導入している。
しかし、データ分布の変化の存在下での一般化が不十分である。
AIベースのCT(Computerd Tomography)分析の文脈では、スキャナーメーカーや再構築技術、あるいは線量の変化によって、重要なデータ分散シフトが発生する可能性がある。
AIハーモニゼーション技術は、様々な取得設定による分散シフトを減らすことで、この問題に対処することができる。
本稿では,様々なスキャナと設定で得られた人為的ファントムのCTスキャンを含むオープンソースベンチマークデータセットを提案する。
ファントムを使用することで、患者間の変異と患者内変異に起因する変化を修正できる。
データセットには、調和したプロトコルといくつかの取得用量を使用して、8つの機関の4つのメーカーから13のスキャナーで取得された1378の画像シリーズが含まれている。
さらに,画像および特徴レベルの安定性と肝組織分類を評価するための方法論,ベースライン結果,オープンソースコードを提示し,AI調和戦略の開発を促進する。
関連論文リスト
- pyMEAL: A Multi-Encoder Augmentation-Aware Learning for Robust and Generalizable Medical Image Translation [0.0]
3D医療画像は、取得プロトコル、スキャナの違い、患者の動きによって、データの不足と不整合に悩まされている。
従来の拡張では、すべての変換に単一のパイプラインを使用しており、各拡張のユニークな特性を無視している。
専用エンコーダによって処理される4つの異なる拡張変異を利用したマルチエンコーダ拡張学習フレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-30T10:01:23Z) - Evaluation of Vision Transformers for Multimodal Image Classification: A Case Study on Brain, Lung, and Kidney Tumors [0.0]
この研究は、MRIおよびCTスキャンのいくつかのデータセットにおいて、Swin TransformerやMaxViTを含むVision Transformersアーキテクチャのパフォーマンスを評価する。
その結果、Swin Transformerは高い精度を示し、個々のデータセットの平均で99%、組み合わせたデータセットで99.4%の精度を実現した。
論文 参考訳(メタデータ) (2025-02-08T10:35:51Z) - Paired Diffusion: Generation of related, synthetic PET-CT-Segmentation scans using Linked Denoising Diffusion Probabilistic Models [0.0]
本研究では,複数のPET-CT-腫瘍マスクペアをペアネットワークと条件エンコーダを用いて生成できる新しいアーキテクチャを提案する。
我々のアプローチには、DDPMサンプリング一貫性を改善するための革新的で時間的なステップ制御機構とノイズ探索戦略が含まれる。
論文 参考訳(メタデータ) (2024-03-26T14:21:49Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
医用画像分割作業の不確実性、特にラター間変動性は重要な課題である。
この可変性は、自動セグメンテーションアルゴリズムの開発と評価に直接影響を及ぼす。
バイオメディカル画像量化チャレンジ(QUBIQ)における不確実性の定量化のベンチマーク結果を報告する。
論文 参考訳(メタデータ) (2024-03-19T17:57:24Z) - Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
医療画像データセットは、コンピュータ支援診断、治療計画、医学研究に使用される訓練モデルに不可欠である。
データ分散のばらつき、データの不足、ジェネリックイメージから事前トレーニングされたモデルを使用する場合の転送学習の問題などである。
本稿では,データ不足と分散不均衡の影響を軽減するために,一連の手法を統合したシームズニューラルネットワークに基づく手法を提案する。
論文 参考訳(メタデータ) (2024-01-18T16:59:27Z) - An Attentive-based Generative Model for Medical Image Synthesis [18.94900480135376]
注意に基づく二重コントラスト生成モデルであるADC-cycleGANを提案する。
このモデルは、二重コントラスト損失項とCycleGAN損失を統合し、合成された画像がソース領域と区別可能であることを保証する。
実験により,提案したADCサイクルGANモデルが,他の最先端生成モデルに匹敵するサンプルを生成することが示された。
論文 参考訳(メタデータ) (2023-06-02T14:17:37Z) - PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for
Cross-Dataset Medical Image Analysis [0.22485007639406518]
新型コロナウイルスの診断はPCR検査で効率的に行えるようになったが、このユースケースは、データの多様性を克服する方法論の必要性を実証するものだ。
本稿では,CTスキャンに最小限の変更を同時に導入しながら,イメージング技術によって引き起こされる差を解消することを目的とした,新しい生成手法を提案する。
論文 参考訳(メタデータ) (2022-08-19T15:49:47Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z) - Convolutional-LSTM for Multi-Image to Single Output Medical Prediction [55.41644538483948]
発展途上国の一般的なシナリオは、複数の理由からボリュームメタデータが失われることである。
ヒトの診断過程を模倣したマルチイメージから単一診断モデルを得ることが可能である。
論文 参考訳(メタデータ) (2020-10-20T04:30:09Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。