Efficient Out-of-Scope Detection in Dialogue Systems via Uncertainty-Driven LLM Routing
- URL: http://arxiv.org/abs/2507.01541v1
- Date: Wed, 02 Jul 2025 09:51:41 GMT
- Title: Efficient Out-of-Scope Detection in Dialogue Systems via Uncertainty-Driven LLM Routing
- Authors: Álvaro Zaera, Diana Nicoleta Popa, Ivan Sekulic, Paolo Rosso,
- Abstract summary: Out-of-scope (OOS) intent detection is a critical challenge in task-oriented dialogue systems (TODS)<n>We propose a novel but simple modular framework that combines uncertainty modeling with fine-tuned large language models (LLMs) for efficient and accurate OOS detection.
- Score: 6.579756339673344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-scope (OOS) intent detection is a critical challenge in task-oriented dialogue systems (TODS), as it ensures robustness to unseen and ambiguous queries. In this work, we propose a novel but simple modular framework that combines uncertainty modeling with fine-tuned large language models (LLMs) for efficient and accurate OOS detection. The first step applies uncertainty estimation to the output of an in-scope intent detection classifier, which is currently deployed in a real-world TODS handling tens of thousands of user interactions daily. The second step then leverages an emerging LLM-based approach, where a fine-tuned LLM is triggered to make a final decision on instances with high uncertainty. Unlike prior approaches, our method effectively balances computational efficiency and performance, combining traditional approaches with LLMs and yielding state-of-the-art results on key OOS detection benchmarks, including real-world OOS data acquired from a deployed TODS.
Related papers
- Intent Recognition and Out-of-Scope Detection using LLMs in Multi-party Conversations [0.6933787237427939]
We propose a hybrid approach to combine BERT and LLMs in zero and few-shot settings to recognize intents and detect OOS utterances.<n>We evaluate our method on multi-party conversation corpora and observe that sharing information from BERT outputs to LLMs leads to system performance improvement.
arXiv Detail & Related papers (2025-07-29T23:48:41Z) - Palisade -- Prompt Injection Detection Framework [0.9620910657090188]
Large Language Models are vulnerable to malicious prompt injection attacks.
This paper proposes a novel NLP based approach for prompt injection detection.
It emphasizes accuracy and optimization through a layered input screening process.
arXiv Detail & Related papers (2024-10-28T15:47:03Z) - Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
We aim to evaluate Large Language Models (LLMs) for embodied decision making.<n>Existing evaluations tend to rely solely on a final success rate.<n>We propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks.
arXiv Detail & Related papers (2024-10-09T17:59:00Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Intent Detection in the Age of LLMs [3.755082744150185]
Intent detection is a critical component of task-oriented dialogue systems (TODS)
Traditional approaches relied on computationally efficient supervised sentence transformer encoder models.
The emergence of generative large language models (LLMs) with intrinsic world knowledge presents new opportunities to address these challenges.
arXiv Detail & Related papers (2024-10-02T15:01:55Z) - Large Language Models for Anomaly Detection in Computational Workflows: from Supervised Fine-Tuning to In-Context Learning [9.601067780210006]
This paper leverages large language models (LLMs) for workflow anomaly detection by exploiting their ability to learn complex data patterns.
Two approaches are investigated: 1) supervised fine-tuning (SFT), where pre-trained LLMs are fine-tuned on labeled data for sentence classification to identify anomalies, and 2) in-context learning (ICL) where prompts containing task descriptions and examples guide LLMs in few-shot anomaly detection without fine-tuning.
arXiv Detail & Related papers (2024-07-24T16:33:04Z) - Optimization-based Prompt Injection Attack to LLM-as-a-Judge [78.20257854455562]
LLM-as-a-Judge uses a large language model (LLM) to select the best response from a set of candidates for a given question.<n>We propose JudgeDeceiver, an optimization-based prompt injection attack to LLM-as-a-Judge.<n>Our evaluation shows that JudgeDeceive is highly effective, and is much more effective than existing prompt injection attacks.
arXiv Detail & Related papers (2024-03-26T13:58:00Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Revisit Input Perturbation Problems for LLMs: A Unified Robustness
Evaluation Framework for Noisy Slot Filling Task [18.623619585980688]
We propose a unified robustness evaluation framework based on the slot-filling task to evaluate the dialogue understanding capability of large language models.
Specifically, we construct a input perturbation evaluation dataset, Noise-LLM, which contains five types of single perturbation and four types of mixed perturbation data.
Our aim is to assess how well various robustness methods of LLMs perform in real-world noisy scenarios.
arXiv Detail & Related papers (2023-10-10T10:22:05Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Discriminative Nearest Neighbor Few-Shot Intent Detection by
Transferring Natural Language Inference [150.07326223077405]
Few-shot learning is attracting much attention to mitigate data scarcity.
We present a discriminative nearest neighbor classification with deep self-attention.
We propose to boost the discriminative ability by transferring a natural language inference (NLI) model.
arXiv Detail & Related papers (2020-10-25T00:39:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.