論文の概要: Perception-Oriented Latent Coding for High-Performance Compressed Domain Semantic Inference
- arxiv url: http://arxiv.org/abs/2507.01608v1
- Date: Wed, 02 Jul 2025 11:21:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:23:00.171122
- Title: Perception-Oriented Latent Coding for High-Performance Compressed Domain Semantic Inference
- Title(参考訳): 高性能圧縮領域意味推論のための知覚指向潜在符号化
- Authors: Xu Zhang, Ming Lu, Yan Chen, Zhan Ma,
- Abstract要約: Perception-Oriented Latent Coding (POLC) は、高性能なセマンティック推論のための潜在機能のセマンティックコンテンツを強化するアプローチである。
POLCは微調整のためのプラグアンドプレイアダプタのみを必要とし、従来のMSE指向の手法に比べてパラメータ数を大幅に削減した。
- 参考スコア(独自算出の注目度): 30.78149130760627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, compressed domain semantic inference has primarily relied on learned image coding models optimized for mean squared error (MSE). However, MSE-oriented optimization tends to yield latent spaces with limited semantic richness, which hinders effective semantic inference in downstream tasks. Moreover, achieving high performance with these models often requires fine-tuning the entire vision model, which is computationally intensive, especially for large models. To address these problems, we introduce Perception-Oriented Latent Coding (POLC), an approach that enriches the semantic content of latent features for high-performance compressed domain semantic inference. With the semantically rich latent space, POLC requires only a plug-and-play adapter for fine-tuning, significantly reducing the parameter count compared to previous MSE-oriented methods. Experimental results demonstrate that POLC achieves rate-perception performance comparable to state-of-the-art generative image coding methods while markedly enhancing performance in vision tasks, with minimal fine-tuning overhead. Code is available at https://github.com/NJUVISION/POLC.
- Abstract(参考訳): 近年、圧縮領域意味推論は主に平均二乗誤差(MSE)に最適化された学習画像符号化モデルに依存している。
しかし、MSE指向の最適化は、限られた意味的豊かさを持つ潜在空間をもたらす傾向にあり、下流タスクにおける効果的な意味推論を妨げる。
さらに、これらのモデルで高い性能を達成するには、特に大規模モデルにおいて計算集約的な視覚モデル全体を微調整する必要があることが多い。
これらの問題に対処するために,高能率圧縮ドメイン意味推論のための潜在特徴のセマンティック内容を強化するアプローチである知覚指向潜時符号化(POLC)を導入する。
セマンティックにリッチな潜伏空間では、POLCは微調整のためのプラグアンドプレイアダプタのみを必要とし、従来のMSE指向の手法に比べてパラメータ数を著しく削減した。
実験結果から,POLCは最先端生成画像符号化法に匹敵する速度知覚性能を実現し,微調整オーバーヘッドを最小限に抑えながら,視覚タスクの性能を著しく向上することが示された。
コードはhttps://github.com/NJUVISION/POLCで入手できる。
関連論文リスト
- Multimodal LLM-Guided Semantic Correction in Text-to-Image Diffusion [52.315729095824906]
MLLM Semantic-Corrected Ping-Pong-Ahead Diffusion (PPAD) は,マルチモーダル大言語モデル(MLLM)を推論中の意味的オブザーバとして導入する新しいフレームワークである。
中間世代をリアルタイムに分析し、潜在意味的不整合を識別し、フィードバックを制御可能な信号に変換し、残りの認知ステップを積極的に導く。
大規模な実験ではPPADの大幅な改善が示されている。
論文 参考訳(メタデータ) (2025-05-26T14:42:35Z) - Semi-supervised Semantic Segmentation with Multi-Constraint Consistency Learning [81.02648336552421]
本稿では,エンコーダとデコーダの段階的拡張を容易にするためのマルチ制約一貫性学習手法を提案する。
自己適応型特徴マスキングとノイズ注入は、デコーダの堅牢な学習のための特徴を摂動させるために、インスタンス固有の方法で設計されている。
Pascal VOC2012およびCityscapesデータセットの実験結果から,提案したMCCLが新たな最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2025-03-23T03:21:33Z) - IPSeg: Image Posterior Mitigates Semantic Drift in Class-Incremental Segmentation [77.06177202334398]
CISSにおけるセマンティックドリフトとデグレード性能に寄与する2つの重要な課題を特定した。
まず、モデルの異なる部分が異なる漸進的な段階に最適化されるという、別々の最適化の問題を強調します。
第二に、不適切な擬似ラベルから生じる雑音のセマンティクスを同定し、その結果、準最適結果が得られる。
論文 参考訳(メタデータ) (2025-02-07T12:19:37Z) - ContextFormer: Redefining Efficiency in Semantic Segmentation [48.81126061219231]
畳み込み法は、局所的な依存関係をうまく捉えるが、長距離関係に苦慮する。
ビジョントランスフォーマー(ViT)は、グローバルなコンテキストキャプチャでは優れるが、高い計算要求によって妨げられる。
我々は,リアルタイムセマンティックセグメンテーションの効率,精度,堅牢性のバランスをとるために,CNN と ViT の強みを活用したハイブリッドフレームワーク ContextFormer を提案する。
論文 参考訳(メタデータ) (2025-01-31T16:11:04Z) - Noise Diffusion for Enhancing Semantic Faithfulness in Text-to-Image Synthesis [9.11767497956649]
本稿では,大規模視覚言語モデルの言語理解能力を活用して,初期雑音ラテントの最適化を導くことを提案する。
本研究では,ノイズ拡散プロセスを導入し,雑音を更新し,分布の整合性を保ちながら意味的に忠実な画像を生成する。
実験により,様々な拡散モデル間のセマンティックアライメントを一貫して強化し,本フレームワークの有効性と適応性を示した。
論文 参考訳(メタデータ) (2024-11-25T15:40:47Z) - Semantic Image Synthesis via Diffusion Models [174.24523061460704]
Denoising Diffusion Probabilistic Models (DDPM) は様々な画像生成タスクにおいて顕著な成功を収めた。
セマンティック画像合成に関する最近の研究は、主に事実上のGANベースのアプローチに従っている。
意味画像合成のためのDDPMに基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-30T18:31:51Z) - Efficient Semantic Image Synthesis via Class-Adaptive Normalization [116.63715955932174]
クラス適応正規化(CLADE)は、セマンティッククラスにのみ適応する軽量かつ等価なバリアントである。
セマンティクスレイアウトから計算したクラス内位置マップエンコーディングを導入し,cladeの正規化パラメータを変調する。
提案されたCLADEは異なるSPADEベースのメソッドに一般化し、SPADEと比較して同等の生成品質を達成できる。
論文 参考訳(メタデータ) (2020-12-08T18:59:32Z) - Prior Guided Feature Enrichment Network for Few-Shot Segmentation [64.91560451900125]
最先端のセマンティックセグメンテーション手法は、良い結果を得るために十分なラベル付きデータを必要とする。
少数のラベル付きサポートサンプルを持つ新しいクラスに迅速に適応するモデルを学習することで,この問題に対処するためのショットセグメンテーションが提案されている。
これらのフレームワークは、高レベルのセマンティック情報の不適切な使用により、目に見えないクラスにおける一般化能力の低下という課題に直面している。
論文 参考訳(メタデータ) (2020-08-04T10:41:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。