論文の概要: Low-Perplexity LLM-Generated Sequences and Where To Find Them
- arxiv url: http://arxiv.org/abs/2507.01844v1
- Date: Wed, 02 Jul 2025 15:58:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:23:00.372606
- Title: Low-Perplexity LLM-Generated Sequences and Where To Find Them
- Title(参考訳): 低誘電率LDM生成配列とその検出方法
- Authors: Arthur Wuhrmann, Anastasiia Kucherenko, Andrei Kucharavy,
- Abstract要約: モデルにより生成された高確率テキストスパンの低パープレクティリティシーケンスの解析を主眼とした体系的アプローチを提案する。
私たちのパイプラインは、変性を避けながら、さまざまなトピックにわたる長いシーケンスを確実に抽出し、トレーニングデータのソースまで追跡します。
一致した人に対しては、ソース文書間で発生した事象の分布を定量化し、冗長リコールのスコープと性質を強調する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Large Language Models (LLMs) become increasingly widespread, understanding how specific training data shapes their outputs is crucial for transparency, accountability, privacy, and fairness. To explore how LLMs leverage and replicate their training data, we introduce a systematic approach centered on analyzing low-perplexity sequences - high-probability text spans generated by the model. Our pipeline reliably extracts such long sequences across diverse topics while avoiding degeneration, then traces them back to their sources in the training data. Surprisingly, we find that a substantial portion of these low-perplexity spans cannot be mapped to the corpus. For those that do match, we quantify the distribution of occurrences across source documents, highlighting the scope and nature of verbatim recall and paving a way toward better understanding of how LLMs training data impacts their behavior.
- Abstract(参考訳): 大規模言語モデル(LLM)が普及するにつれて、特定のトレーニングデータがアウトプットをどのように形成するかを理解することが、透明性、説明責任、プライバシ、公正性に不可欠である。
LLMがトレーニングデータをどのように活用し、複製するかを検討するために、モデルによって生成された高確率テキストスパンである低パープレクティリティシーケンスの分析を中心にした体系的なアプローチを導入する。
私たちのパイプラインは、変性を避けながら、さまざまなトピックにわたる長いシーケンスを確実に抽出し、トレーニングデータのソースまで追跡します。
驚くべきことに、これらの低パープレキシティスパンのかなりの部分は、コーパスにマッピングできない。
一致した人に対しては、ソース文書間で発生した事象の分布を定量化し、冗長なリコールのスコープと性質を強調し、LCMのトレーニングデータがどのようにそれらの振る舞いに影響を与えるかをよりよく理解するための方法を練る。
関連論文リスト
- Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
大規模言語モデル(LLM)は、従来の手法を進化させるために情報検索に広く統合されている。
エージェント検索フレームワークであるEXSEARCHを提案する。
4つの知識集約ベンチマークの実験では、EXSEARCHはベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2025-05-26T15:27:55Z) - Memorization or Interpolation ? Detecting LLM Memorization through Input Perturbation Analysis [8.725781605542675]
大規模言語モデル(LLM)は,大規模なデータセットのトレーニングを通じて,優れたパフォーマンスを実現する。
LLMは、真の一般化ではなく、トレーニングデータの冗長な再現のような振る舞いを示すことができる。
本稿では, LLMにおける暗記検出のための新しい手法であるPEARLを紹介する。
論文 参考訳(メタデータ) (2025-05-05T20:42:34Z) - Information-Guided Identification of Training Data Imprint in (Proprietary) Large Language Models [52.439289085318634]
情報誘導プローブを用いて,プロプライエタリな大規模言語モデル (LLM) で知られているトレーニングデータを識別する方法を示す。
我々の研究は、重要な観察の上に成り立っている: 高次数テキストパスは、暗記プローブにとって良い検索材料である。
論文 参考訳(メタデータ) (2025-03-15T10:19:15Z) - Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data [76.90128359866462]
本稿では,出力確率と事前学習データ頻度の相関を計測する,記憶化,分布記憶化という拡張概念を導入する。
本研究は, より単純で知識集約的なタスクにおいて, 記憶がより大きな役割を担い, 一般化が, より困難で推論に基づくタスクの鍵であることを示す。
論文 参考訳(メタデータ) (2024-07-20T21:24:40Z) - Soft Prompting for Unlearning in Large Language Models [11.504012974208466]
この研究は、データ保護規制を動機とした大規模言語モデルのための機械学習の研究に焦点をあてる。
我々はtextbfUntextbflearning (SPUL) のための textbfSoft textbfPrompting フレームワークを提案する。
本研究では,提案手法の厳密な評価を行い,SPULが実用性と忘れとのトレードオフを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2024-06-17T19:11:40Z) - Self-training Large Language Models through Knowledge Detection [26.831873737733737]
大規模な言語モデル(LLM)は、ダウンストリームタスク間で印象的なパフォーマンスを達成するために、広範囲のラベル付きデータセットとトレーニング計算を必要とすることが多い。
本稿では,LLMが独自ラベルを自動でキュレートし,未知のデータサンプルを選択的に学習する自己学習パラダイムについて検討する。
経験的評価は、複数の被験者にまたがる世代における幻覚の減少に有意な改善を示した。
論文 参考訳(メタデータ) (2024-06-17T07:25:09Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
大きな言語モデル(LLM)の能力を高めることが大きな課題だ。
本研究は,従来の事前学習データセットを用いたLCMの光連続訓練に関する実証的戦略から始まった。
次に、この戦略をインスタンス重み付け分散ロバスト最適化の原則化されたフレームワークに定式化します。
論文 参考訳(メタデータ) (2024-02-22T04:10:57Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
トレーニングセットの低品質データは、通常、チューニングのチューニングに有害である。
我々は「反射チューニング」と呼ばれる新しい手法を提案する。
このアプローチでは、オラクルLSMを使用して、データ内の命令や応答の質を検査し、向上することで、元のトレーニングデータをリサイクルする。
論文 参考訳(メタデータ) (2023-10-18T05:13:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。