Towards Foundation Auto-Encoders for Time-Series Anomaly Detection
- URL: http://arxiv.org/abs/2507.01875v1
- Date: Wed, 02 Jul 2025 16:39:36 GMT
- Title: Towards Foundation Auto-Encoders for Time-Series Anomaly Detection
- Authors: Gastón García González, Pedro Casas, Emilio Martínez, Alicia Fernández,
- Abstract summary: FAE is a foundation generative-AI model for anomaly detection in time-series data.<n>We present preliminary results in different multi-dimensional time-series datasets from various domains.
- Score: 2.019925198501543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate a novel approach to time-series modeling, inspired by the successes of large pretrained foundation models. We introduce FAE (Foundation Auto-Encoders), a foundation generative-AI model for anomaly detection in time-series data, based on Variational Auto-Encoders (VAEs). By foundation, we mean a model pretrained on massive amounts of time-series data which can learn complex temporal patterns useful for accurate modeling, forecasting, and detection of anomalies on previously unseen datasets. FAE leverages VAEs and Dilated Convolutional Neural Networks (DCNNs) to build a generic model for univariate time-series modeling, which could eventually perform properly in out-of-the-box, zero-shot anomaly detection applications. We introduce the main concepts of FAE, and present preliminary results in different multi-dimensional time-series datasets from various domains, including a real dataset from an operational mobile ISP, and the well known KDD 2021 Anomaly Detection dataset.
Related papers
- Time Series Generation Under Data Scarcity: A Unified Generative Modeling Approach [7.631288333466648]
We conduct the first large-scale study evaluating leading generative models in data-scarce settings.<n>We propose a unified diffusion-based generative framework that can synthesize high-fidelity time series using just a few examples.
arXiv Detail & Related papers (2025-05-26T18:39:04Z) - Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting [64.45587649141842]
Time-series forecasting plays a critical role in many real-world applications.<n>No single model consistently outperforms others across different test samples, but instead (ii) each model excels in specific cases.<n>We introduce TimeFuse, a framework for collective time-series forecasting with sample-level adaptive fusion of heterogeneous models.
arXiv Detail & Related papers (2025-05-24T00:45:07Z) - TimeFound: A Foundation Model for Time Series Forecasting [33.57877080300831]
TimeFound is an encoder-decoder transformer-based time series foundation model.<n>We use a multi-resolution patching strategy to capture complex temporal patterns at multiple scales.
arXiv Detail & Related papers (2025-03-06T05:55:45Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - MADS: Modulated Auto-Decoding SIREN for time series imputation [9.673093148930874]
We propose MADS, a novel auto-decoding framework for time series imputation, built upon implicit neural representations.
We evaluate our model on two real-world datasets, and show that it outperforms state-of-the-art methods for time series imputation.
arXiv Detail & Related papers (2023-07-03T09:08:47Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
This work presents DGHL, a new family of generative models for time series anomaly detection.
A top-down Convolution Network maps a novel hierarchical latent space to time series windows, exploiting temporal dynamics to encode information efficiently.
Our method outperformed current state-of-the-art models on four popular benchmark datasets.
arXiv Detail & Related papers (2022-02-15T17:19:44Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Improving the Accuracy of Global Forecasting Models using Time Series
Data Augmentation [7.38079566297881]
Forecasting models that are trained across sets of many time series, known as Global Forecasting Models (GFM), have shown promising results in forecasting competitions and real-world applications.
We propose a novel, data augmentation based forecasting framework that is capable of improving the baseline accuracy of GFM models in less data-abundant settings.
arXiv Detail & Related papers (2020-08-06T13:52:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.