論文の概要: evMLP: An Efficient Event-Driven MLP Architecture for Vision
- arxiv url: http://arxiv.org/abs/2507.01927v1
- Date: Wed, 02 Jul 2025 17:36:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:23:00.40509
- Title: evMLP: An Efficient Event-Driven MLP Architecture for Vision
- Title(参考訳): evMLP: ビジョンのための効率的なイベント駆動型MLPアーキテクチャ
- Authors: Zhentan Zheng,
- Abstract要約: イベント駆動のローカル更新機構を備えた evMLP を提案する。
evMLPは、イメージやフィーチャーマップをマップ経由で独立して処理することができる。
最先端のモデルと競合する精度を得る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have achieved remarkable results in computer vision tasks. In the early days, Convolutional Neural Networks (CNNs) were the mainstream architecture. In recent years, Vision Transformers (ViTs) have become increasingly popular. In addition, exploring applications of multi-layer perceptrons (MLPs) has provided new perspectives for research into vision model architectures. In this paper, we present evMLP accompanied by a simple event-driven local update mechanism. The proposed evMLP can independently process patches on images or feature maps via MLPs. We define changes between consecutive frames as "events". Under the event-driven local update mechanism, evMLP selectively processes patches where events occur. For sequential image data (e.g., video processing), this approach improves computational performance by avoiding redundant computations. Through ImageNet image classification experiments, evMLP attains accuracy competitive with state-of-the-art models. More significantly, experimental results on multiple video datasets demonstrate that evMLP reduces computational cost via its event-driven local update mechanism while maintaining output consistency with its non-event-driven baseline. The code and trained models are available at https://github.com/i-evi/evMLP.
- Abstract(参考訳): 深層ニューラルネットワークはコンピュータビジョンタスクにおいて顕著な成果を上げている。
初期のCNN(Convolutional Neural Networks)が主流であった。
近年ではビジョントランスフォーマー (ViT) が普及している。
さらに、多層パーセプトロン(MLP)の応用を探求し、視覚モデルアーキテクチャの研究に新たな視点を与えている。
本稿では,イベント駆動型ローカル更新機構を備えたevMLPを提案する。
提案されたevMLPは、MLPを介して、画像やフィーチャーマップのパッチを独立に処理することができる。
連続するフレーム間の変化を「イベント」と定義する。
イベント駆動のローカル更新メカニズムでは、evMLPはイベントが発生するパッチを選択的に処理する。
逐次画像データ(例えば、ビデオ処理)では、冗長な計算を避けて計算性能を向上させる。
ImageNetの画像分類実験を通じて、evMLPは最先端のモデルと競合する精度を実現する。
さらに、複数のビデオデータセットの実験結果から、evMLPはイベント駆動のローカル更新機構を通じて計算コストを削減し、非イベント駆動のベースラインとの出力整合性を維持していることが示された。
コードとトレーニングされたモデルはhttps://github.com/i-evi/evMLP.comで公開されている。
関連論文リスト
- X-MLP: A Patch Embedding-Free MLP Architecture for Vision [4.493200639605705]
視覚のための多層パーセプトロン (MLP) アーキテクチャが再び人気となった。
X-MLPは、完全に接続された層上に完全に構築され、パッチの埋め込みが不要なアーキテクチャである。
X-MLPは10のベンチマークデータセットでテストされている。
論文 参考訳(メタデータ) (2023-07-02T15:20:25Z) - Caterpillar: A Pure-MLP Architecture with Shifted-Pillars-Concatenation [68.24659910441736]
Shifted-Pillars-Concatenation (SPC)モジュールは、より優れたローカルモデリングパワーとパフォーマンス向上を提供する。
我々は、SMLPNetのハイブリッドモデルにおいて、畳み込み層をSPCモジュールに置き換えることで、Caterpillarと呼ばれる純粋なMLPアーキテクチャを構築します。
実験では、小さなスケールとImageNet-1kの分類ベンチマークにおいて、Caterpillarの優れた性能を示している。
論文 参考訳(メタデータ) (2023-05-28T06:19:36Z) - R2-MLP: Round-Roll MLP for Multi-View 3D Object Recognition [33.53114929452528]
多層パーセプトロン(MLP)のみに基づく視覚アーキテクチャは、コンピュータビジョンコミュニティで注目されている。
本稿では,異なるビューからのパッチ間の通信を考慮し,ビューに基づく3次元オブジェクト認識タスクを提案する。
我々のR$2$MLPは、概念的に単純な構造であるため、既存の手法と比較して競争性能が向上する。
論文 参考訳(メタデータ) (2022-11-20T21:13:02Z) - MAXIM: Multi-Axis MLP for Image Processing [19.192826213493838]
本稿では,画像処理タスクの汎用的なバックボーンとして,MAXIMと呼ばれるマルチ軸アーキテクチャを提案する。
MAXIMはUNet型の階層構造を使用し、空間的なゲートによって可能となる長距離相互作用をサポートする。
その結果, MAXIMモデルにより, 画像処理タスクの10以上のベンチマークにおいて, 最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2022-01-09T09:59:32Z) - An Image Patch is a Wave: Phase-Aware Vision MLP [54.104040163690364]
マルチレイヤパーセプトロン(MLP)は、完全に接続されたレイヤのみを積み重ねた、非常に単純なアーキテクチャを持つ新しいタイプの視覚モデルである。
本稿では,各トークンを振幅と位相の2つの部分を持つ波動関数として表現することを提案する。
実験により、提案したWave-MLPは、様々な視覚タスクにおける最先端アーキテクチャよりも優れていることが示された。
論文 参考訳(メタデータ) (2021-11-24T06:25:49Z) - Sparse MLP for Image Recognition: Is Self-Attention Really Necessary? [65.37917850059017]
我々は sMLPNet というアテンションレスネットワークを構築した。
2次元画像トークンでは、sMLPは軸方向に沿って1Dを適用し、パラメータは行または列間で共有される。
66Mパラメータにスケールアップする際、sMLPNetは83.4%のトップ-1精度を達成しており、これは最先端のSwin Transformerと同等である。
論文 参考訳(メタデータ) (2021-09-12T04:05:15Z) - ConvMLP: Hierarchical Convolutional MLPs for Vision [7.874749885641495]
本稿では,視覚認識のための軽量でステージワイドな協調設計である階層型 ConMLP を提案する。
本研究では,ConvMLPをシームレスに転送し,少ないパラメータで競合する結果が得られることを示す。
論文 参考訳(メタデータ) (2021-09-09T17:52:57Z) - A Battle of Network Structures: An Empirical Study of CNN, Transformer,
and MLP [121.35904748477421]
畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンのための支配的なディープニューラルネットワーク(DNN)アーキテクチャである。
トランスフォーマーとマルチ層パーセプトロン(MLP)ベースのモデル(Vision TransformerやVision-Mixer)が新しいトレンドを導い始めた。
本稿では,これらのDNN構造について実証的研究を行い,それぞれの長所と短所を理解しようとする。
論文 参考訳(メタデータ) (2021-08-30T06:09:02Z) - MLP-Mixer: An all-MLP Architecture for Vision [93.16118698071993]
マルチ層パーセプトロン(MLP)を基盤としたアーキテクチャ「Mixer」を発表。
Mixerはイメージ分類ベンチマークで競合スコアを獲得し、事前トレーニングと推論は最先端のモデルに匹敵する。
論文 参考訳(メタデータ) (2021-05-04T16:17:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。