Acoustic evaluation of a neural network dedicated to the detection of animal vocalisations
- URL: http://arxiv.org/abs/2507.01974v1
- Date: Mon, 23 Jun 2025 13:01:10 GMT
- Title: Acoustic evaluation of a neural network dedicated to the detection of animal vocalisations
- Authors: Jérémy Rouch, M Ducrettet, S Haupert, R Emonet, F Sèbe,
- Abstract summary: We propose a simple method for acoustic analysis of the detection system's performance.<n>The proposed measure is based on relating the signal-to-noise ratio of synthetic signals to their probability of detection.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The accessibility of long-duration recorders, adapted to sometimes demanding field conditions, has enabled the deployment of extensive animal population monitoring campaigns through ecoacoustics. The effectiveness of automatic signal detection methods, increasingly based on neural approaches, is frequently evaluated solely through machine learning metrics, while acoustic analysis of performance remains rare. As part of the acoustic monitoring of Rock Ptarmigan populations, we propose here a simple method for acoustic analysis of the detection system's performance. The proposed measure is based on relating the signal-to-noise ratio of synthetic signals to their probability of detection. We show how this measure provides information about the system and allows optimisation of its training. We also show how it enables modelling of the detection distance, thus offering the possibility of evaluating its dynamics according to the sound environment and accessing an estimation of the spatial density of calls.
Related papers
- ActiveRIR: Active Audio-Visual Exploration for Acoustic Environment Modeling [57.1025908604556]
An environment acoustic model represents how sound is transformed by the physical characteristics of an indoor environment.
We propose active acoustic sampling, a new task for efficiently building an environment acoustic model of an unmapped environment.
We introduce ActiveRIR, a reinforcement learning policy that leverages information from audio-visual sensor streams to guide agent navigation and determine optimal acoustic data sampling positions.
arXiv Detail & Related papers (2024-04-24T21:30:01Z) - All Thresholds Barred: Direct Estimation of Call Density in Bioacoustic
Data [1.7916003204531015]
We propose a validation scheme for estimating call density in a body of data.
We use these distributions to predict site-level densities, which may be subject to distribution shifts.
arXiv Detail & Related papers (2024-02-23T14:52:44Z) - Attention-Based Recurrent Neural Network For Automatic Behavior Laying
Hen Recognition [0.0]
This work focuses on the recognition of the types of calls of the laying hens in order to propose a robust system of characterization of their behavior.
We first collected and annotated laying hen call signals, then designed an optimal acoustic characterization based on the combination of time and frequency domain features.
We then used these features to build the multi-label classification models based on recurrent neural network to assign a semantic class to the vocalization that characterize the laying hen behavior.
arXiv Detail & Related papers (2024-01-18T10:52:46Z) - Show from Tell: Audio-Visual Modelling in Clinical Settings [58.88175583465277]
We consider audio-visual modelling in a clinical setting, providing a solution to learn medical representations without human expert annotation.
A simple yet effective multi-modal self-supervised learning framework is proposed for this purpose.
The proposed approach is able to localise anatomical regions of interest during ultrasound imaging, with only speech audio as a reference.
arXiv Detail & Related papers (2023-10-25T08:55:48Z) - Histogram Layer Time Delay Neural Networks for Passive Sonar
Classification [58.720142291102135]
A novel method combines a time delay neural network and histogram layer to incorporate statistical contexts for improved feature learning and underwater acoustic target classification.
The proposed method outperforms the baseline model, demonstrating the utility in incorporating statistical contexts for passive sonar target recognition.
arXiv Detail & Related papers (2023-07-25T19:47:26Z) - What You Hear Is What You See: Audio Quality Metrics From Image Quality
Metrics [44.659718609385315]
We investigate the feasibility of utilizing state-of-the-art image perceptual metrics for evaluating audio signals by representing them as spectrograms.
We customise one of the metrics which has a psychoacoustically plausible architecture to account for the peculiarities of sound signals.
We evaluate the effectiveness of our proposed metric and several baseline metrics using a music dataset.
arXiv Detail & Related papers (2023-05-19T10:43:57Z) - Automated Detection of Dolphin Whistles with Convolutional Networks and
Transfer Learning [7.52108936537426]
We show that convolutional neural networks can significantly outperform traditional automatic methods in a challenging detection task.
The proposed system can detect signals even in the presence of ambient noise, at the same time consistently reducing the likelihood of producing false positives and false negatives.
arXiv Detail & Related papers (2022-11-28T15:06:46Z) - Deep Impulse Responses: Estimating and Parameterizing Filters with Deep
Networks [76.830358429947]
Impulse response estimation in high noise and in-the-wild settings is a challenging problem.
We propose a novel framework for parameterizing and estimating impulse responses based on recent advances in neural representation learning.
arXiv Detail & Related papers (2022-02-07T18:57:23Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
We present a bioacoustic signal classifier equipped with a discriminative mechanism to extract useful features for analysis and classification efficiently.
Unlike current bioacoustic recognition methods, which are task-oriented, the proposed model relies on transforming the input signals into vector subspaces.
The validity of the proposed method is verified using three challenging bioacoustic datasets containing anuran, bee, and mosquito species.
arXiv Detail & Related papers (2021-03-18T11:01:21Z) - Bulbar ALS Detection Based on Analysis of Voice Perturbation and Vibrato [68.97335984455059]
The purpose of this work was to verify the sutability of the sustain vowel phonation test for automatic detection of patients with ALS.
We proposed enhanced procedure for separation of voice signal into fundamental periods that requires for calculation of measurements.
arXiv Detail & Related papers (2020-03-24T12:49:25Z) - A Multi-view CNN-based Acoustic Classification System for Automatic
Animal Species Identification [42.119250432849505]
We propose a deep learning based acoustic classification framework for Wireless Acoustic Sensor Network (WASN)
The proposed framework is based on cloud architecture which relaxes the computational burden on the wireless sensor node.
To improve the recognition accuracy, we design a multi-view Convolution Neural Network (CNN) to extract the short-, middle-, and long-term dependencies in parallel.
arXiv Detail & Related papers (2020-02-23T03:51:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.