Automated Detection of Dolphin Whistles with Convolutional Networks and
Transfer Learning
- URL: http://arxiv.org/abs/2211.15406v1
- Date: Mon, 28 Nov 2022 15:06:46 GMT
- Title: Automated Detection of Dolphin Whistles with Convolutional Networks and
Transfer Learning
- Authors: Burla Nur Korkmaz, Roee Diamant, Gil Danino, Alberto Testolin
- Abstract summary: We show that convolutional neural networks can significantly outperform traditional automatic methods in a challenging detection task.
The proposed system can detect signals even in the presence of ambient noise, at the same time consistently reducing the likelihood of producing false positives and false negatives.
- Score: 7.52108936537426
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Effective conservation of maritime environments and wildlife management of
endangered species require the implementation of efficient, accurate and
scalable solutions for environmental monitoring. Ecoacoustics offers the
advantages of non-invasive, long-duration sampling of environmental sounds and
has the potential to become the reference tool for biodiversity surveying.
However, the analysis and interpretation of acoustic data is a time-consuming
process that often requires a great amount of human supervision. This issue
might be tackled by exploiting modern techniques for automatic audio signal
analysis, which have recently achieved impressive performance thanks to the
advances in deep learning research. In this paper we show that convolutional
neural networks can indeed significantly outperform traditional automatic
methods in a challenging detection task: identification of dolphin whistles
from underwater audio recordings. The proposed system can detect signals even
in the presence of ambient noise, at the same time consistently reducing the
likelihood of producing false positives and false negatives. Our results
further support the adoption of artificial intelligence technology to improve
the automatic monitoring of marine ecosystems.
Related papers
- SALINA: Towards Sustainable Live Sonar Analytics in Wild Ecosystems [12.711126566709076]
We present SALINA, a sustainable live sonar analytics system.
SALINA enables real-time processing of acoustic sonar data with spatial and temporal adaptations.
SALINA was deployed for six months at two inland rivers in British Columbia, Canada.
arXiv Detail & Related papers (2024-10-10T00:32:28Z) - Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring [68.41400824104953]
This paper presents a vehicle prototype that addresses the use of Artificial Intelligence algorithms and enhanced sensing techniques for water quality monitoring.
The vehicle is fully equipped with high-quality sensors to measure water quality parameters and water depth.
By means of a stereo-camera, it also can detect and locate macro-plastics in real environments.
arXiv Detail & Related papers (2024-10-08T10:35:32Z) - Proactive Detection of Voice Cloning with Localized Watermarking [50.13539630769929]
We present AudioSeal, the first audio watermarking technique designed specifically for localized detection of AI-generated speech.
AudioSeal employs a generator/detector architecture trained jointly with a localization loss to enable localized watermark detection up to the sample level.
AudioSeal achieves state-of-the-art performance in terms of robustness to real life audio manipulations and imperceptibility based on automatic and human evaluation metrics.
arXiv Detail & Related papers (2024-01-30T18:56:22Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
This paper proposes a radial threat estimation method for energy pipelines based on distributed optical fiber sensing technology.
We introduce a continuous multi-view and multi-domain feature fusion methodology to extract comprehensive signal features.
We incorporate the concept of transfer learning through a pre-trained model, enhancing both recognition accuracy and training efficiency.
arXiv Detail & Related papers (2023-12-18T12:37:35Z) - Efficient speech detection in environmental audio using acoustic
recognition and knowledge distillation [3.732312301223128]
Acoustic monitoring of biodiversity has emerged as an important monitoring tool.
Despite significant strides in deep learning, the deployment of large neural networks on compact devices poses challenges due to memory and latency constraints.
Our approach focuses on leveraging knowledge distillation techniques to design efficient, lightweight student models for speech detection in bioacoustics.
arXiv Detail & Related papers (2023-12-14T17:55:32Z) - Histogram Layer Time Delay Neural Networks for Passive Sonar
Classification [58.720142291102135]
A novel method combines a time delay neural network and histogram layer to incorporate statistical contexts for improved feature learning and underwater acoustic target classification.
The proposed method outperforms the baseline model, demonstrating the utility in incorporating statistical contexts for passive sonar target recognition.
arXiv Detail & Related papers (2023-07-25T19:47:26Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
We introduce a deep learning approach for the retrieval of wind speed time series from underwater acoustics.
Our approach bridges data assimilation and learning-based frameworks to benefit both from prior physical knowledge and computational efficiency.
arXiv Detail & Related papers (2022-08-18T15:27:40Z) - Fish sounds: towards the evaluation of marine acoustic biodiversity
through data-driven audio source separation [1.9116784879310027]
The marine ecosystem is changing at an alarming rate, exhibiting biodiversity loss and the migration of tropical species to temperate basins.
One of the most popular and effective methods for monitoring marine biodiversity is passive acoustics monitoring (PAM)
In this work, we show that the same techniques can be successfully used to automatically extract fish vocalizations in PAM recordings.
arXiv Detail & Related papers (2022-01-13T14:57:34Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
We present a bioacoustic signal classifier equipped with a discriminative mechanism to extract useful features for analysis and classification efficiently.
Unlike current bioacoustic recognition methods, which are task-oriented, the proposed model relies on transforming the input signals into vector subspaces.
The validity of the proposed method is verified using three challenging bioacoustic datasets containing anuran, bee, and mosquito species.
arXiv Detail & Related papers (2021-03-18T11:01:21Z) - Complex data labeling with deep learning methods: Lessons from fisheries
acoustics [0.0]
This paper focuses on a case study where the ground truth labels are non-obvious: echograms labeling.
We demonstrate that convolutional neural networks trained with non-stationary datasets can be used to stress parts of a new dataset needing human expert correction.
arXiv Detail & Related papers (2020-10-21T13:49:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.