Integrating Large Language Models in Financial Investments and Market Analysis: A Survey
- URL: http://arxiv.org/abs/2507.01990v1
- Date: Sun, 29 Jun 2025 05:25:31 GMT
- Title: Integrating Large Language Models in Financial Investments and Market Analysis: A Survey
- Authors: Sedigheh Mahdavi, Jiating, Chen, Pradeep Kumar Joshi, Lina Huertas Guativa, Upmanyu Singh,
- Abstract summary: Large Language Models (LLMs) have been employed in financial decision making, enhancing analytical capabilities for investment strategies.<n>This study provides a structured review of recent LLMs research on applications in stock selection, risk assessment, sentiment analysis, trading, and financial forecasting.
- Score: 39.58317527488534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have been employed in financial decision making, enhancing analytical capabilities for investment strategies. Traditional investment strategies often utilize quantitative models, fundamental analysis, and technical indicators. However, LLMs have introduced new capabilities to process and analyze large volumes of structured and unstructured data, extract meaningful insights, and enhance decision-making in real-time. This survey provides a structured overview of recent research on LLMs within the financial domain, categorizing research contributions into four main frameworks: LLM-based Frameworks and Pipelines, Hybrid Integration Methods, Fine-Tuning and Adaptation Approaches, and Agent-Based Architectures. This study provides a structured review of recent LLMs research on applications in stock selection, risk assessment, sentiment analysis, trading, and financial forecasting. By reviewing the existing literature, this study highlights the capabilities, challenges, and potential directions of LLMs in financial markets.
Related papers
- Bridging Language Models and Financial Analysis [49.361943182322385]
The rapid advancements in Large Language Models (LLMs) have unlocked transformative possibilities in natural language processing.<n>Financial data is often embedded in intricate relationships across textual content, numerical tables, and visual charts.<n>Despite the fast pace of innovation in LLM research, there remains a significant gap in their practical adoption within the finance industry.
arXiv Detail & Related papers (2025-03-14T01:35:20Z) - Auto-Generating Earnings Report Analysis via a Financial-Augmented LLM [1.3597551064547502]
This paper presents a novel challenge: developing an LLM specifically for automating the generation of earnings reports analysis.<n>Our methodology involves an in-depth analysis of existing earnings reports followed by a unique approach to fine-tune an LLM for this purpose.<n>With extensive financial documents, we construct financial instruction data, enabling the refined adaptation of our LLM to financial contexts.
arXiv Detail & Related papers (2024-12-11T08:09:42Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
Large language models (LLMs) have unlocked novel opportunities for machine learning applications in the financial domain.
We explore the application of LLMs on various financial tasks, focusing on their potential to transform traditional practices and drive innovation.
We highlight this survey for categorizing the existing literature into key application areas, including linguistic tasks, sentiment analysis, financial time series, financial reasoning, agent-based modeling, and other applications.
arXiv Detail & Related papers (2024-06-15T16:11:35Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Revolutionizing Finance with LLMs: An Overview of Applications and Insights [45.660896719456886]
Large Language Models (LLMs) like ChatGPT have seen considerable advancements and have been applied in diverse fields.<n>These models are being utilized for automating financial report generation, forecasting market trends, analyzing investor sentiment, and offering personalized financial advice.
arXiv Detail & Related papers (2024-01-22T01:06:17Z) - Fine-tuning and Utilization Methods of Domain-specific LLMs [0.0]
This study investigates approaches for fine-tuning and leveraging domain-specific LLMs.
It details dataset selection, preprocessing, model choice, and considerations crucial for LLM fine-tuning in finance.
The study explores the potential of LLMs in the financial domain, identifies limitations, and proposes directions for improvement.
arXiv Detail & Related papers (2024-01-01T06:22:04Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks.
This article provides an overview of the existing literature on a broad range of LLM-related concepts.
arXiv Detail & Related papers (2023-07-12T20:01:52Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIU is a comprehensive framework including the first financial large language model (LLMs) based on fine-tuning LLaMA with instruction data.
We propose FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks.
We conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks.
arXiv Detail & Related papers (2023-06-08T14:20:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.