PAL: Designing Conversational Agents as Scalable, Cooperative Patient Simulators for Palliative-Care Training
- URL: http://arxiv.org/abs/2507.02122v1
- Date: Wed, 02 Jul 2025 20:09:52 GMT
- Title: PAL: Designing Conversational Agents as Scalable, Cooperative Patient Simulators for Palliative-Care Training
- Authors: Neil K. R. Sehgal, Hita Kambhamettu, Allen Chang, Andrew Zhu, Lyle Ungar, Sharath Chandra Guntuku,
- Abstract summary: We present PAL (Palliative Assisted Learning-bot), a conversational system that simulates emotionally nuanced patient interactions.<n> PAL supports text and voice modalities and is designed to scaffold clinical skill-building through repeated, low-cost practice.<n>We contribute: (1) empirical evidence that large language models can support palliative communication training; (2) design insights for modality-aware, emotionally sensitive simulation tools; and (3) implications for systems that support emotional labor, cooperative learning, and AI-augmented training in high-stakes care settings.
- Score: 7.181732620510345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective communication in serious illness and palliative care is essential but often under-taught due to limited access to training resources like standardized patients. We present PAL (Palliative Assisted Learning-bot), a conversational system that simulates emotionally nuanced patient interactions and delivers structured feedback grounded in an existing empathy-based framework. PAL supports text and voice modalities and is designed to scaffold clinical skill-building through repeated, low-cost practice. Through a mixed-methods study with 17 U.S. medical trainees and clinicians, we explore user engagement with PAL, evaluate usability, and examine design tensions around modalities, emotional realism, and feedback delivery. Participants found PAL helpful for reflection and skill refinement, though some noted limitations in emotional authenticity and the adaptability of feedback. We contribute: (1) empirical evidence that large language models can support palliative communication training; (2) design insights for modality-aware, emotionally sensitive simulation tools; and (3) implications for systems that support emotional labor, cooperative learning, and AI-augmented training in high-stakes care settings.
Related papers
- Reframe Your Life Story: Interactive Narrative Therapist and Innovative Moment Assessment with Large Language Models [92.93521294357058]
Narrative therapy helps individuals transform problematic life stories into empowering alternatives.<n>Current approaches lack realism in specialized psychotherapy and fail to capture therapeutic progression over time.<n>Int (Interactive Narrative Therapist) simulates expert narrative therapists by planning therapeutic stages, guiding reflection levels, and generating contextually appropriate expert-like responses.
arXiv Detail & Related papers (2025-07-27T11:52:09Z) - GEMeX-ThinkVG: Towards Thinking with Visual Grounding in Medical VQA via Reinforcement Learning [50.94508930739623]
Medical visual question answering aims to support clinical decision-making by enabling models to answer natural language questions based on medical images.<n>Current methods still suffer from limited answer reliability and poor interpretability, impairing the ability of clinicians and patients to understand and trust model-generated answers.<n>This work first proposes a Thinking with Visual Grounding dataset wherein the answer generation is decomposed into intermediate reasoning steps.<n>We introduce a novel verifiable reward mechanism for reinforcement learning to guide post-training, improving the alignment between the model's reasoning process and its final answer.
arXiv Detail & Related papers (2025-06-22T08:09:58Z) - Large Language Model-Powered Conversational Agent Delivering Problem-Solving Therapy (PST) for Family Caregivers: Enhancing Empathy and Therapeutic Alliance Using In-Context Learning [3.5944459851781057]
Family caregivers often face substantial mental health challenges.<n>This study explored the potential of a large language model (LLM)-powered conversational agent to deliver evidence-based mental health support.
arXiv Detail & Related papers (2025-06-13T00:47:57Z) - Co-Designing a Chatbot for Culturally Competent Clinical Communication: Experience and Reflections [0.0]
We explore the use of an AI-driven robot to support culturally competent communication training for medical students.<n>The robot was designed to simulate realistic patient conversations and provide structured feedback based on the ACT Cultural Competence model.<n>We piloted the robot with a small group of third-year medical students at a UK medical school in 2024.
arXiv Detail & Related papers (2025-05-18T17:21:46Z) - Modeling Challenging Patient Interactions: LLMs for Medical Communication Training [39.67477471073807]
This study proposes the use of Large Language Models (LLMs) to simulate authentic patient communication styles.<n>We developed virtual patients (VPs) that embody nuanced emotional and conversational traits.<n>Medical professionals evaluated these VPs, rating their authenticity (accuser: $3.8 pm 1.0$; rationalizer: $3.7 pm 0.8$ on a 5-point Likert scale (from one to five)) and correctly identifying their styles.
arXiv Detail & Related papers (2025-03-28T09:04:10Z) - Automating Feedback Analysis in Surgical Training: Detection, Categorization, and Assessment [65.70317151363204]
This work introduces the first framework for reconstructing surgical dialogue from unstructured real-world recordings.<n>In surgical training, the formative verbal feedback that trainers provide to trainees during live surgeries is crucial for ensuring safety, correcting behavior immediately, and facilitating long-term skill acquisition.<n>Our framework integrates voice activity detection, speaker diarization, and automated speech recaognition, with a novel enhancement that removes hallucinations.
arXiv Detail & Related papers (2024-12-01T10:35:12Z) - CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy [67.23830698947637]
We propose a new benchmark, CBT-BENCH, for the systematic evaluation of cognitive behavioral therapy (CBT) assistance.<n>We include three levels of tasks in CBT-BENCH: I: Basic CBT knowledge acquisition, with the task of multiple-choice questions; II: Cognitive model understanding, with the tasks of cognitive distortion classification, primary core belief classification, and fine-grained core belief classification; III: Therapeutic response generation, with the task of generating responses to patient speech in CBT therapy sessions.<n> Experimental results indicate that while LLMs perform well in reciting CBT knowledge, they fall short in complex real-world scenarios
arXiv Detail & Related papers (2024-10-17T04:52:57Z) - Synthetic Patients: Simulating Difficult Conversations with Multimodal Generative AI for Medical Education [0.0]
Effective patient-centered communication is a core competency for physicians.
Both seasoned providers and medical trainees report decreased confidence in leading conversations on sensitive topics.
We present a novel educational tool designed to facilitate interactive, real-time simulations of difficult conversations in a video-based format.
arXiv Detail & Related papers (2024-05-30T11:02:08Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - Evaluating the Efficacy of Interactive Language Therapy Based on LLM for
High-Functioning Autistic Adolescent Psychological Counseling [1.1780706927049207]
This study investigates the efficacy of Large Language Models (LLMs) in interactive language therapy for high-functioning autistic adolescents.
LLMs present a novel opportunity to augment traditional psychological counseling methods.
arXiv Detail & Related papers (2023-11-12T07:55:39Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
We present MET, a learning-based algorithm for perceiving a human's level of engagement from videos.
We release a new dataset, MEDICA, for mental health patient engagement detection.
arXiv Detail & Related papers (2020-11-17T15:18:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.