論文の概要: High-Fidelity Differential-information Driven Binary Vision Transformer
- arxiv url: http://arxiv.org/abs/2507.02222v2
- Date: Sun, 13 Jul 2025 02:11:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 14:36:07.748129
- Title: High-Fidelity Differential-information Driven Binary Vision Transformer
- Title(参考訳): 高忠実微分情報駆動二元視覚変換器
- Authors: Tian Gao, Zhiyuan Zhang, Kaijie Yin, Xu-Cheng Zhong, Hui Kong,
- Abstract要約: ビジョントランスフォーマーのバイナリ化(ViT)は、高い計算/ストレージ要求とエッジデバイスデプロイメントの制約の間のトレードオフに対処する、有望なアプローチを提供する。
本稿では,従来の ViT アーキテクチャと計算効率を両立させながら,高情報化が可能な新しいバイナリ ViT である DIDB-ViT を提案する。
- 参考スコア(独自算出の注目度): 38.19452875887032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The binarization of vision transformers (ViTs) offers a promising approach to addressing the trade-off between high computational/storage demands and the constraints of edge-device deployment. However, existing binary ViT methods often suffer from severe performance degradation or rely heavily on full-precision modules. To address these issues, we propose DIDB-ViT, a novel binary ViT that is highly informative while maintaining the original ViT architecture and computational efficiency. Specifically, we design an informative attention module incorporating differential information to mitigate information loss caused by binarization and enhance high-frequency retention. To preserve the fidelity of the similarity calculations between binary Q and K tensors, we apply frequency decomposition using the discrete Haar wavelet and integrate similarities across different frequencies. Additionally, we introduce an improved RPReLU activation function to restructure the activation distribution, expanding the model's representational capacity. Experimental results demonstrate that our DIDB-ViT significantly outperforms state-of-the-art network quantization methods in multiple ViT architectures, achieving superior image classification and segmentation performance.
- Abstract(参考訳): ビジョントランスフォーマー(ViT)のバイナライゼーションは、高い計算/ストレージ要求とエッジデバイスデプロイメントの制約との間のトレードオフに対処する、有望なアプローチを提供する。
しかし、既存のバイナリViTメソッドは、しばしばパフォーマンスの悪化に悩まされるか、フル精度モジュールに大きく依存する。
このような問題に対処するため,本論文では,元のViTアーキテクチャと計算効率を維持しつつ,高い情報を提供する新しいバイナリViTであるDIDB-ViTを提案する。
具体的には,二項化による情報損失を軽減し,高周波保持率を高めるために,差分情報を組み込んだ情報処理モジュールを設計する。
2値QとKのテンソル間の類似性計算の忠実性を維持するため、離散Haarウェーブレットを用いて周波数分解を行い、異なる周波数にわたって類似性を統合する。
さらに、アクティベーション分布を再構成し、モデルの表現能力を拡張するために、改良されたRPReLUアクティベーション関数を導入する。
実験結果から,DIDB-ViTは複数のViTアーキテクチャにおいて最先端のネットワーク量子化手法よりも優れ,画像分類やセグメンテーション性能に優れることがわかった。
関連論文リスト
- BHViT: Binarized Hybrid Vision Transformer [53.38894971164072]
モデルバイナライゼーションは畳み込みニューラルネットワーク(CNN)のリアルタイムおよびエネルギー効率の計算を可能にした。
本稿では,バイナライズフレンドリーなハイブリッドViTアーキテクチャであるBHViTとそのバイナライズモデルを提案する。
提案アルゴリズムは,バイナリ ViT 手法間でSOTA 性能を実現する。
論文 参考訳(メタデータ) (2025-03-04T08:35:01Z) - Transformer Meets Twicing: Harnessing Unattended Residual Information [2.1605931466490795]
トランスフォーマーベースのディープラーニングモデルは、多くの言語やビジョンタスクで最先端のパフォーマンスを達成した。
自己注意機構は複雑なデータパターンを扱えることが証明されているが、注意行列の表現能力はトランスフォーマー層間で著しく低下する。
本研究では,NLM平滑化の低パス動作を軽減するため,非パラメトリック回帰におけるカーネルツイシング手順を用いた新しいアテンション機構であるTwicing Attentionを提案する。
論文 参考訳(メタデータ) (2025-03-02T01:56:35Z) - Boosting ViT-based MRI Reconstruction from the Perspectives of Frequency Modulation, Spatial Purification, and Scale Diversification [6.341065683872316]
ViTは、画像の高周波成分を捉えるのに苦労し、局所的なテクスチャやエッジ情報を検出する能力を制限する。
コンテンツ中の関連トークンと非関連トークンのうち、MSA(Multi-head self-attention)を計算する。
ViTsのフィードフォワードネットワークは、画像復元に重要なマルチスケール情報をモデル化することができない。
論文 参考訳(メタデータ) (2024-12-14T10:03:08Z) - Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
超圧縮アルゴリズムであるバイナリ化は、高度な拡散モデル(DM)を効果的に加速する可能性を提供する
既存の二項化法では性能が著しく低下する。
画像SRのための新しいバイナライズ拡散モデルBI-DiffSRを提案する。
論文 参考訳(メタデータ) (2024-06-09T10:30:25Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - CT-MVSNet: Efficient Multi-View Stereo with Cross-scale Transformer [8.962657021133925]
クロススケールトランス(CT)プロセスは、追加計算なしで異なる段階の表現を特徴付ける。
複数のスケールで異なる対話型アテンションの組み合わせを利用する適応型マッチング認識変換器(AMT)を導入する。
また、より細かなコストボリューム構成に大まかにグローバルな意味情報を埋め込む2機能ガイドアグリゲーション(DFGA)も提案する。
論文 参考訳(メタデータ) (2023-12-14T01:33:18Z) - BinaryViT: Towards Efficient and Accurate Binary Vision Transformers [4.339315098369913]
ビジョントランスフォーマー(ViT)は、ほとんどのコンピュータビジョンフィールドの基本的なアーキテクチャとして登場した。
最も強力な圧縮手法の1つとして、バイナライゼーションは、重みとアクティベーション値をpm$1として定量化することにより、ニューラルネットワークの計算を減らす。
既存のバイナライゼーション手法はCNNでは優れた性能を示したが、ViTの完全なバイナライゼーションはまだ未検討であり、性能低下に悩まされている。
論文 参考訳(メタデータ) (2023-05-24T05:06:59Z) - Rich CNN-Transformer Feature Aggregation Networks for Super-Resolution [50.10987776141901]
近年の視覚変換器と自己注意は,様々なコンピュータビジョンタスクにおいて有望な成果を上げている。
我々は,CNNの局所的特徴とトランスフォーマーが捉えた長距離依存性を活用する,超解像(SR)タスクのための効果的なハイブリッドアーキテクチャを提案する。
提案手法は,多数のベンチマークデータセットから最先端のSR結果を得る。
論文 参考訳(メタデータ) (2022-03-15T06:52:25Z) - Vision Transformers are Robust Learners [65.91359312429147]
ビジョントランスフォーマー(ViT)の一般的な腐敗や摂動、分布シフト、自然逆転例に対する堅牢性について検討します。
ViTsが実際により堅牢な学習者である理由を説明するために、定量的および定性的な指標を提供する分析を提示します。
論文 参考訳(メタデータ) (2021-05-17T02:39:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。