PhysicsCorrect: A Training-Free Approach for Stable Neural PDE Simulations
- URL: http://arxiv.org/abs/2507.02227v1
- Date: Thu, 03 Jul 2025 01:22:57 GMT
- Title: PhysicsCorrect: A Training-Free Approach for Stable Neural PDE Simulations
- Authors: Xinquan Huang, Paris Perdikaris,
- Abstract summary: We present PhysicsCorrect, a training-free correction framework that enforces PDE consistency at each prediction step.<n>Our key innovation is an efficient caching strategy that precomputes the Jacobian and its pseudoinverse during an offline warm-up phase.<n>Across three representative PDE systems, PhysicsCorrect reduces prediction errors by up to 100x while adding negligible inference time.
- Score: 4.7903561901859355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks have emerged as powerful surrogates for solving partial differential equations (PDEs), offering significant computational speedups over traditional methods. However, these models suffer from a critical limitation: error accumulation during long-term rollouts, where small inaccuracies compound exponentially, eventually causing complete divergence from physically valid solutions. We present PhysicsCorrect, a training-free correction framework that enforces PDE consistency at each prediction step by formulating correction as a linearized inverse problem based on PDE residuals. Our key innovation is an efficient caching strategy that precomputes the Jacobian and its pseudoinverse during an offline warm-up phase, reducing computational overhead by two orders of magnitude compared to standard correction approaches. Across three representative PDE systems -- Navier-Stokes fluid dynamics, wave equations, and the chaotic Kuramoto-Sivashinsky equation -- PhysicsCorrect reduces prediction errors by up to 100x while adding negligible inference time (under 5\%). The framework integrates seamlessly with diverse architectures including Fourier Neural Operators, UNets, and Vision Transformers, effectively transforming unstable neural surrogates into reliable simulation tools that bridge the gap between deep learning's computational efficiency and the physical fidelity demanded by practical scientific applications.
Related papers
- Accelerating Multiscale Modeling with Hybrid Solvers: Coupling FEM and Neural Operators with Domain Decomposition [3.0635300721402228]
This work introduces a novel hybrid framework that integrates PI-NO with finite element method (FE) through domain decomposition.<n>The framework efficacy has been validated across a range of problems, spanning static, quasi-static, and dynamic regimes.<n>Our study shows that our hybrid solver: (1) maintains solution continuity across subdomain interfaces, (2) reduces computational costs by eliminating fine mesh requirements, (3) mitigates error accumulation in time dependent simulations, and (4) enables automatic adaptation to evolving physical phenomena.
arXiv Detail & Related papers (2025-04-15T16:54:04Z) - Enabling Automatic Differentiation with Mollified Graph Neural Operators [75.3183193262225]
We propose the mollified graph neural operator (mGNO), the first method to leverage automatic differentiation and compute emphexact gradients on arbitrary geometries.<n>For a PDE example on regular grids, mGNO paired with autograd reduced the L2 relative data error by 20x compared to finite differences.<n>It can also solve PDEs on unstructured point clouds seamlessly, using physics losses only, at resolutions vastly lower than those needed for finite differences to be accurate enough.
arXiv Detail & Related papers (2025-04-11T06:16:30Z) - Implicit Neural Differential Model for Spatiotemporal Dynamics [5.1854032131971195]
We introduce Im-PiNDiff, a novel implicit physics-integrated neural differentiable solver for stabletemporal dynamics.<n>Inspired by deep equilibrium models, Im-PiNDiff advances the state using implicit fixed-point layers, enabling robust long-term simulation.<n>Im-PiNDiff achieves superior predictive performance, enhanced numerical stability, and substantial reductions in memory and cost.
arXiv Detail & Related papers (2025-04-03T04:07:18Z) - MultiPDENet: PDE-embedded Learning with Multi-time-stepping for Accelerated Flow Simulation [48.41289705783405]
We propose a PDE-embedded network with multiscale time stepping (MultiPDENet)<n>In particular, we design a convolutional filter based on the structure of finite difference with a small number of parameters to optimize.<n>A Physics Block with a 4th-order Runge-Kutta integrator at the fine time scale is established that embeds the structure of PDEs to guide the prediction.
arXiv Detail & Related papers (2025-01-27T12:15:51Z) - Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
Physics-informed neural networks (PINNs) have made significant strides in modeling dynamical systems governed by partial differential equations (PDEs)<n>We propose PIDO, a novel physics-informed neural PDE solver designed to generalize effectively across diverse PDE configurations.<n>We validate PIDO on a range of benchmarks, including 1D combined equations and 2D Navier-Stokes equations.
arXiv Detail & Related papers (2024-11-28T13:16:20Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
We propose LordNet, a tunable and efficient neural network for modeling entanglements.
The experiments on solving Poisson's equation and (2D and 3D) Navier-Stokes equation demonstrate that the long-range entanglements can be well modeled by the LordNet.
arXiv Detail & Related papers (2022-06-19T14:41:08Z) - Multi-resolution partial differential equations preserved learning
framework for spatiotemporal dynamics [11.981731023317945]
Physics-informed deep learning (PiDL) addresses these challenges by incorporating physical principles into the model.
We propose to leverage physics prior knowledge by baking'' the discretized governing equations into the neural network architecture.
This method, embedding discretized PDEs through convolutional residual networks in a multi-resolution setting, largely improves the generalizability and long-term prediction.
arXiv Detail & Related papers (2022-05-09T01:27:58Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
Graph neural networks show promise in accurately representing irregularly meshed objects and learning their dynamics.
In this work, we represent meshes naturally as graphs, process these using Graph Networks, and formulate our physics-based loss to provide an unsupervised learning framework for partial differential equations (PDE)
Our framework will enable the application of PDE solvers in interactive settings, such as model-based control of soft-body deformations.
arXiv Detail & Related papers (2022-03-30T19:22:56Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.