SurgVisAgent: Multimodal Agentic Model for Versatile Surgical Visual Enhancement
- URL: http://arxiv.org/abs/2507.02252v1
- Date: Thu, 03 Jul 2025 03:00:26 GMT
- Title: SurgVisAgent: Multimodal Agentic Model for Versatile Surgical Visual Enhancement
- Authors: Zeyu Lei, Hongyuan Yu, Jinlin Wu, Zhen Chen,
- Abstract summary: SurgVisAgent is an end-to-end intelligent surgical vision agent built on multimodal large language models (MLLMs)<n>It dynamically identifies distortion categories and severity levels in endoscopic images, enabling it to perform a variety of enhancement tasks.<n>We construct a benchmark simulating real-world surgical distortions, on which extensive experiments demonstrate that SurgVisAgent surpasses traditional single-task models.
- Score: 8.337819078911405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precise surgical interventions are vital to patient safety, and advanced enhancement algorithms have been developed to assist surgeons in decision-making. Despite significant progress, these algorithms are typically designed for single tasks in specific scenarios, limiting their effectiveness in complex real-world situations. To address this limitation, we propose SurgVisAgent, an end-to-end intelligent surgical vision agent built on multimodal large language models (MLLMs). SurgVisAgent dynamically identifies distortion categories and severity levels in endoscopic images, enabling it to perform a variety of enhancement tasks such as low-light enhancement, overexposure correction, motion blur elimination, and smoke removal. Specifically, to achieve superior surgical scenario understanding, we design a prior model that provides domain-specific knowledge. Additionally, through in-context few-shot learning and chain-of-thought (CoT) reasoning, SurgVisAgent delivers customized image enhancements tailored to a wide range of distortion types and severity levels, thereby addressing the diverse requirements of surgeons. Furthermore, we construct a comprehensive benchmark simulating real-world surgical distortions, on which extensive experiments demonstrate that SurgVisAgent surpasses traditional single-task models, highlighting its potential as a unified solution for surgical assistance.
Related papers
- Multimodal Causal-Driven Representation Learning for Generalizable Medical Image Segmentation [56.52520416420957]
We propose Multimodal Causal-Driven Representation Learning (MCDRL) to tackle domain generalization in medical image segmentation.<n>MCDRL consistently outperforms competing methods, yielding superior segmentation accuracy and exhibiting robust generalizability.
arXiv Detail & Related papers (2025-08-07T03:41:41Z) - EndoARSS: Adapting Spatially-Aware Foundation Model for Efficient Activity Recognition and Semantic Segmentation in Endoscopic Surgery [11.286605039002419]
Endoscopic surgery is the gold standard for robotic-assisted minimally invasive surgery.<n>Traditional deep learning models often struggle with cross-activity interference, leading to suboptimal performance in each downstream task.<n>We propose EndoARSS, a novel multi-task learning framework specifically designed for endoscopy surgery activity recognition and semantic segmentation.
arXiv Detail & Related papers (2025-06-07T15:18:43Z) - Challenging Vision-Language Models with Surgical Data: A New Dataset and Broad Benchmarking Study [0.6120768859742071]
We present the first large-scale study assessing the capabilities of Vision Language Models (VLMs) for endoscopic tasks.<n>Using a diverse set of state-of-the-art models, multiple surgical datasets, and extensive human reference annotations, we address three key research questions.<n>Our results reveal that VLMs can effectively perform basic surgical perception tasks, such as object counting and localization, with performance levels comparable to general domain tasks.
arXiv Detail & Related papers (2025-06-06T16:53:12Z) - SurgVLM: A Large Vision-Language Model and Systematic Evaluation Benchmark for Surgical Intelligence [72.10889173696928]
We propose SurgVLM, one of the first large vision-language foundation models for surgical intelligence.<n>We construct a large-scale multimodal surgical database, SurgVLM-DB, spanning more than 16 surgical types and 18 anatomical structures.<n>Building upon this comprehensive dataset, we propose SurgVLM, which is built upon Qwen2.5-VL, and undergoes instruction tuning to 10+ surgical tasks.
arXiv Detail & Related papers (2025-06-03T07:44:41Z) - Benchmarking Laparoscopic Surgical Image Restoration and Beyond [54.28852320829451]
In laparoscopic surgery, a clear and high-quality visual field is critical for surgeons to make accurate decisions.<n> persistent visual degradation, including smoke generated by energy devices, lens fogging from thermal gradients, and lens contamination pose risks to patient safety.<n>We introduce a real-world open-source surgical image restoration dataset covering laparoscopic environments, called SurgClean.
arXiv Detail & Related papers (2025-05-25T14:17:56Z) - Surgical Foundation Model Leveraging Compression and Entropy Maximization for Image-Guided Surgical Assistance [50.486523249499115]
Real-time video understanding is critical to guide procedures in minimally invasive surgery (MIS)<n>We propose Compress-to-Explore (C2E), a novel self-supervised framework to learn compact, informative representations from surgical videos.<n>C2E uses entropy-maximizing decoders to compress images while preserving clinically relevant details, improving encoder performance without labeled data.
arXiv Detail & Related papers (2025-05-16T14:02:24Z) - Benchmarking performance, explainability, and evaluation strategies of vision-language models for surgery: Challenges and opportunities [2.9212404280476267]
Vision-language models (VLMs) can be trained on large volumes of raw image-text pairs and exhibit strong adaptability.<n>We conduct a benchmarking study of several popular VLMs across diverse laparoscopic datasets.<n>Our findings reveal a mismatch between prediction accuracy and visual grounding, indicating that models may make correct predictions while focusing on irrelevant areas of the image.
arXiv Detail & Related papers (2025-05-16T00:42:18Z) - SurgicalVLM-Agent: Towards an Interactive AI Co-Pilot for Pituitary Surgery [15.263720052126853]
Large vision-language models (VLMs) offer a promising solution by enabling dynamic task planning and predictive decision support.<n>We introduce SurgicalVLM-Agent, an AI co-pilot for image-guided pituitary surgery, capable of conversation, planning, and task execution.
arXiv Detail & Related papers (2025-03-12T15:30:39Z) - VS-Assistant: Versatile Surgery Assistant on the Demand of Surgeons [29.783300422432763]
We propose a Versatile Surgery Assistant (VS-Assistant) that can accurately understand the surgeon's intention.
We devise a surgical-Calling Tuning strategy to enable the VS-Assistant to understand surgical intentions.
arXiv Detail & Related papers (2024-05-14T02:05:36Z) - Hypergraph-Transformer (HGT) for Interactive Event Prediction in Laparoscopic and Robotic Surgery [47.47211257890948]
We propose a predictive neural network that is capable of understanding and predicting critical interactive aspects of surgical workflow from intra-abdominal video.<n>We verify our approach on established surgical datasets and applications, including the detection and prediction of action triplets.<n>Our results demonstrate the superiority of our approach compared to unstructured alternatives.
arXiv Detail & Related papers (2024-02-03T00:58:05Z) - Learning Multi-modal Representations by Watching Hundreds of Surgical Video Lectures [50.09187683845788]
Recent advancements in surgical computer vision applications have been driven by vision-only models.<n>These methods rely on manually annotated surgical videos to predict a fixed set of object categories.<n>In this work, we put forward the idea that the surgical video lectures available through open surgical e-learning platforms can provide effective vision and language supervisory signals.
arXiv Detail & Related papers (2023-07-27T22:38:12Z) - Multimodal Semantic Scene Graphs for Holistic Modeling of Surgical
Procedures [70.69948035469467]
We take advantage of the latest computer vision methodologies for generating 3D graphs from camera views.
We then introduce the Multimodal Semantic Graph Scene (MSSG) which aims at providing unified symbolic and semantic representation of surgical procedures.
arXiv Detail & Related papers (2021-06-09T14:35:44Z) - Towards Better Surgical Instrument Segmentation in Endoscopic Vision:
Multi-Angle Feature Aggregation and Contour Supervision [22.253074722129053]
We propose a general embeddable approach to improve current deep neural network (DNN) segmentation models.
The proposed method is validated with ablation experiments on the novel Sinus-Surgery datasets collected from surgeons' operations.
arXiv Detail & Related papers (2020-02-25T05:28:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.