Benchmarking Laparoscopic Surgical Image Restoration and Beyond
- URL: http://arxiv.org/abs/2505.19161v1
- Date: Sun, 25 May 2025 14:17:56 GMT
- Title: Benchmarking Laparoscopic Surgical Image Restoration and Beyond
- Authors: Jialun Pei, Diandian Guo, Donghui Yang, Zhixi Li, Yuxin Feng, Long Ma, Bo Du, Pheng-Ann Heng,
- Abstract summary: In laparoscopic surgery, a clear and high-quality visual field is critical for surgeons to make accurate decisions.<n> persistent visual degradation, including smoke generated by energy devices, lens fogging from thermal gradients, and lens contamination pose risks to patient safety.<n>We introduce a real-world open-source surgical image restoration dataset covering laparoscopic environments, called SurgClean.
- Score: 54.28852320829451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In laparoscopic surgery, a clear and high-quality visual field is critical for surgeons to make accurate intraoperative decisions. However, persistent visual degradation, including smoke generated by energy devices, lens fogging from thermal gradients, and lens contamination due to blood or tissue fluid splashes during surgical procedures, severely impair visual clarity. These degenerations can seriously hinder surgical workflow and pose risks to patient safety. To systematically investigate and address various forms of surgical scene degradation, we introduce a real-world open-source surgical image restoration dataset covering laparoscopic environments, called SurgClean, which involves multi-type image restoration tasks, e.g., desmoking, defogging, and desplashing. SurgClean comprises 1,020 images with diverse degradation types and corresponding paired reference labels. Based on SurgClean, we establish a standardized evaluation benchmark and provide performance for 22 representative generic task-specific image restoration approaches, including 12 generic and 10 task-specific image restoration approaches. Experimental results reveal substantial performance gaps relative to clinical requirements, highlighting a critical opportunity for algorithm advancements in intelligent surgical restoration. Furthermore, we explore the degradation discrepancies between surgical and natural scenes from structural perception and semantic understanding perspectives, providing fundamental insights for domain-specific image restoration research. Our work aims to empower the capabilities of restoration algorithms to increase surgical environments and improve the efficiency of clinical procedures.
Related papers
- SurgVisAgent: Multimodal Agentic Model for Versatile Surgical Visual Enhancement [8.337819078911405]
SurgVisAgent is an end-to-end intelligent surgical vision agent built on multimodal large language models (MLLMs)<n>It dynamically identifies distortion categories and severity levels in endoscopic images, enabling it to perform a variety of enhancement tasks.<n>We construct a benchmark simulating real-world surgical distortions, on which extensive experiments demonstrate that SurgVisAgent surpasses traditional single-task models.
arXiv Detail & Related papers (2025-07-03T03:00:26Z) - Surgical Foundation Model Leveraging Compression and Entropy Maximization for Image-Guided Surgical Assistance [50.486523249499115]
Real-time video understanding is critical to guide procedures in minimally invasive surgery (MIS)<n>We propose Compress-to-Explore (C2E), a novel self-supervised framework to learn compact, informative representations from surgical videos.<n>C2E uses entropy-maximizing decoders to compress images while preserving clinically relevant details, improving encoder performance without labeled data.
arXiv Detail & Related papers (2025-05-16T14:02:24Z) - SURGIVID: Annotation-Efficient Surgical Video Object Discovery [42.16556256395392]
We propose an annotation-efficient framework for the semantic segmentation of surgical scenes.
We employ image-based self-supervised object discovery to identify the most salient tools and anatomical structures in surgical videos.
Our unsupervised setup reinforced with only 36 annotation labels indicates comparable localization performance with fully-supervised segmentation models.
arXiv Detail & Related papers (2024-09-12T07:12:20Z) - Deep intra-operative illumination calibration of hyperspectral cameras [73.08443963791343]
Hyperspectral imaging (HSI) is emerging as a promising novel imaging modality with various potential surgical applications.
We show that dynamically changing lighting conditions in the operating room dramatically affect the performance of HSI applications.
We propose a novel learning-based approach to automatically recalibrating hyperspectral images during surgery.
arXiv Detail & Related papers (2024-09-11T08:30:03Z) - Step-Calibrated Diffusion for Biomedical Optical Image Restoration [47.191704042917394]
Restorative Step-Calibrated Diffusion (RSCD) is an unpaired diffusion-based image restoration method.<n>RSCD outperforms other widely used unpaired image restoration methods on both image quality and perceptual evaluation.<n>RSCD improves performance on downstream clinical imaging tasks, including automated brain tumor diagnosis and deep tissue imaging.
arXiv Detail & Related papers (2024-03-20T15:38:53Z) - Navigating the Synthetic Realm: Harnessing Diffusion-based Models for
Laparoscopic Text-to-Image Generation [3.2039076408339353]
We present an intuitive approach for generating synthetic laparoscopic images from short text prompts using diffusion-based generative models.
Results on fidelity and diversity demonstrate that diffusion-based models can acquire knowledge about the style and semantics in the field of image-guided surgery.
arXiv Detail & Related papers (2023-12-05T16:20:22Z) - Action Recognition in Video Recordings from Gynecologic Laparoscopy [4.002010889177872]
Action recognition is a prerequisite for many applications in laparoscopic video analysis.
In this study, we design and evaluate a CNN-RNN architecture as well as a customized training-inference framework.
arXiv Detail & Related papers (2023-11-30T16:15:46Z) - CholecTriplet2021: A benchmark challenge for surgical action triplet
recognition [66.51610049869393]
This paper presents CholecTriplet 2021: an endoscopic vision challenge organized at MICCAI 2021 for the recognition of surgical action triplets in laparoscopic videos.
We present the challenge setup and assessment of the state-of-the-art deep learning methods proposed by the participants during the challenge.
A total of 4 baseline methods and 19 new deep learning algorithms are presented to recognize surgical action triplets directly from surgical videos, achieving mean average precision (mAP) ranging from 4.2% to 38.1%.
arXiv Detail & Related papers (2022-04-10T18:51:55Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.