It's Hard to Be Normal: The Impact of Noise on Structure-agnostic Estimation
- URL: http://arxiv.org/abs/2507.02275v2
- Date: Thu, 10 Jul 2025 00:09:56 GMT
- Title: It's Hard to Be Normal: The Impact of Noise on Structure-agnostic Estimation
- Authors: Jikai Jin, Lester Mackey, Vasilis Syrgkanis,
- Abstract summary: We study how well one can estimate a treatment effect given black-box machine learning estimates of nuisance functions.<n>We find that the answer depends in a surprising way on the distribution of the treatment noise.
- Score: 38.61560534969323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Structure-agnostic causal inference studies how well one can estimate a treatment effect given black-box machine learning estimates of nuisance functions (like the impact of confounders on treatment and outcomes). Here, we find that the answer depends in a surprising way on the distribution of the treatment noise. Focusing on the partially linear model of \citet{robinson1988root}, we first show that the widely adopted double machine learning (DML) estimator is minimax rate-optimal for Gaussian treatment noise, resolving an open problem of \citet{mackey2018orthogonal}. Meanwhile, for independent non-Gaussian treatment noise, we show that DML is always suboptimal by constructing new practical procedures with higher-order robustness to nuisance errors. These \emph{ACE} procedures use structure-agnostic cumulant estimators to achieve $r$-th order insensitivity to nuisance errors whenever the $(r+1)$-st treatment cumulant is non-zero. We complement these core results with novel minimax guarantees for binary treatments in the partially linear model. Finally, using synthetic demand estimation experiments, we demonstrate the practical benefits of our higher-order robust estimators.
Related papers
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Orthogonal Causal Calibration [55.28164682911196]
We develop general algorithms for reducing the task of causal calibration to that of calibrating a standard (non-causal) predictive model.<n>Our results are exceedingly general, showing that essentially any existing calibration algorithm can be used in causal settings.
arXiv Detail & Related papers (2024-06-04T03:35:25Z) - Optimal Rates and Saturation for Noiseless Kernel Ridge Regression [4.585021053685196]
We present a comprehensive study of Kernel ridge regression (KRR) in the noiseless regime.<n>KRR is a fundamental method for learning functions from finite samples.<n>We introduce a refined notion of degrees of freedom, which we believe has broader applicability in the analysis of kernel methods.
arXiv Detail & Related papers (2024-02-24T04:57:59Z) - Multiply Robust Estimator Circumvents Hyperparameter Tuning of Neural
Network Models in Causal Inference [0.0]
Multiply Robust (MR) estimator allows us to leverage all the first-step models in a single estimator.
We show that MR is the solution to a broad class of estimating equations, and is also consistent if one of the treatment models is $sqrtn$ consistent.
arXiv Detail & Related papers (2023-07-20T02:31:12Z) - Online Bootstrap Inference with Nonconvex Stochastic Gradient Descent
Estimator [0.0]
In this paper, we investigate the theoretical properties of gradient descent (SGD) for statistical inference in the context of convex problems.
We propose two coferential procedures which may contain multiple error minima.
arXiv Detail & Related papers (2023-06-03T22:08:10Z) - Robust Matrix Completion with Heavy-tailed Noise [0.5837881923712392]
This paper studies low-rank matrix completion in the presence of heavy-tailed possibly asymmetric noise.
In this paper, we adopt adaptive Huber loss accommodate heavy-tailed noise, which is robust against large and possibly asymmetric errors.
We prove that under merely a second moment condition on the error, the Euclidean error falls geometrically fast until achieving a minimax-optimal statistical estimation error.
arXiv Detail & Related papers (2022-06-09T04:48:48Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Binary Classification of Gaussian Mixtures: Abundance of Support
Vectors, Benign Overfitting and Regularization [39.35822033674126]
We study binary linear classification under a generative Gaussian mixture model.
We derive novel non-asymptotic bounds on the classification error of the latter.
Our results extend to a noisy model with constant probability noise flips.
arXiv Detail & Related papers (2020-11-18T07:59:55Z) - Learning Halfspaces with Tsybakov Noise [50.659479930171585]
We study the learnability of halfspaces in the presence of Tsybakov noise.
We give an algorithm that achieves misclassification error $epsilon$ with respect to the true halfspace.
arXiv Detail & Related papers (2020-06-11T14:25:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.