LaCo: Efficient Layer-wise Compression of Visual Tokens for Multimodal Large Language Models
- URL: http://arxiv.org/abs/2507.02279v1
- Date: Thu, 03 Jul 2025 03:42:54 GMT
- Title: LaCo: Efficient Layer-wise Compression of Visual Tokens for Multimodal Large Language Models
- Authors: Juntao Liu, Liqiang Niu, Wenchao Chen, Jie Zhou, Fandong Meng,
- Abstract summary: We propose LaCo (Layer-wise Visual Token Compression), a novel framework that enables effective token compression within the intermediate layers of the vision encoder.<n>LaCo introduces two core components: 1) a layer-wise pixel-shuffle mechanism that systematically merges adjacent tokens through space-to-channel transformations, and 2) a residual learning architecture with non-parametric shortcuts.
- Score: 62.240460476785934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing visual token compression methods for Multimodal Large Language Models (MLLMs) predominantly operate as post-encoder modules, limiting their potential for efficiency gains. To address this limitation, we propose LaCo (Layer-wise Visual Token Compression), a novel framework that enables effective token compression within the intermediate layers of the vision encoder. LaCo introduces two core components: 1) a layer-wise pixel-shuffle mechanism that systematically merges adjacent tokens through space-to-channel transformations, and 2) a residual learning architecture with non-parametric shortcuts that preserves critical visual information during compression. Extensive experiments indicate that our LaCo outperforms all existing methods when compressing tokens in the intermediate layers of the vision encoder, demonstrating superior effectiveness. In addition, compared to external compression, our method improves training efficiency beyond 20% and inference throughput over 15% while maintaining strong performance.
Related papers
- METEOR: Multi-Encoder Collaborative Token Pruning for Efficient Vision Language Models [92.37117312251755]
We propose a progressive pruning framework, namely Multi-Encoder collaboraTivE tOken pRuning (METEOR)<n>For multi-vision encoding, we discard redundant tokens within each encoder via a rank guided collaborative token assignment strategy.<n>For multi-vision fusion, we combine the visual features from different encoders while reducing cross-encoder redundancy with cooperative pruning.
arXiv Detail & Related papers (2025-07-28T13:50:53Z) - MambaMia: A State-Space-Model-Based Compression for Efficient Video Understanding in Large Multimodal Models [33.89483627891117]
We propose an efficient framework to compress multiple video-frame features before feeding them into large multimodal models.<n>Our framework emphasizes resource-conscious efficiency, making it practical for real-world deployments.
arXiv Detail & Related papers (2025-06-16T14:49:49Z) - DyMU: Dynamic Merging and Virtual Unmerging for Efficient VLMs [124.52164183968145]
We present DyMU, an efficient, training-free framework that reduces the computational burden of vision-language models (VLMs)<n>Our approach comprises two key components. First, Dynamic Token Merging (DToMe) reduces the number of visual token embeddings by merging similar tokens based on image complexity.<n>Second, Virtual Token Unmerging (VTU) simulates the expected token sequence for large language models (LLMs) by efficiently reconstructing the attention dynamics of a full sequence.
arXiv Detail & Related papers (2025-04-23T18:38:18Z) - Efficient Token Compression for Vision Transformer with Spatial Information Preserved [59.79302182800274]
Token compression is essential for reducing the computational and memory requirements of transformer models.<n>We propose an efficient and hardware-compatible token compression method called Prune and Merge.
arXiv Detail & Related papers (2025-03-30T14:23:18Z) - InternVL-X: Advancing and Accelerating InternVL Series with Efficient Visual Token Compression [1.8893427856534721]
We propose InternVL-X, which outperforms the InternVL model in both performance and efficiency.<n>By utilizing 20% or fewer visual tokens, InternVL-X achieves state-of-the-art performance on 7 public MLLM benchmarks, and improves the average metric by 2.34% across 12 tasks.
arXiv Detail & Related papers (2025-03-27T09:31:35Z) - RedundancyLens: Revealing and Exploiting Visual Token Processing Redundancy for Efficient Decoder-Only MLLMs [38.34856927170692]
We propose a training-free framework for analyzing trained Multimodal Large Language Model (MLLM)<n>It consists of Probe-Activated Dynamic FFN and Hollow Attention, which enable adjustable reductions in computations for visual tokens.<n>Experiments demonstrate substantial, structured, and clustered redundancy unique to decoder-only MLLMs.
arXiv Detail & Related papers (2025-01-31T11:09:16Z) - Global Compression Commander: Plug-and-Play Inference Acceleration for High-Resolution Large Vision-Language Models [28.311125014789905]
"Global Compression Commander" (i.e., GlobalCom$2$) is a novel plug-and-play token compression framework for HR-LVLMs.<n>Our experiments show that GlobalCom$2$ maintains over 90% performance while compressing 90% visual tokens.
arXiv Detail & Related papers (2025-01-09T11:57:58Z) - FocusLLaVA: A Coarse-to-Fine Approach for Efficient and Effective Visual Token Compression [45.37530855889661]
High-resolution images lead to a quadratic increase in the number of visual tokens input into Multi-modal Large Language Models.
Current work develop visual token compression methods to achieve efficiency improvements, often at the expense of performance.
We build a coarse-to-fine visual token compression method, with a vision-guided sampler for compressing redundant regions with low information density, and a text-guided sampler for selecting visual tokens that are strongly correlated with the user instructions.
arXiv Detail & Related papers (2024-11-21T15:37:52Z) - Token Compensator: Altering Inference Cost of Vision Transformer without Re-Tuning [63.43972993473501]
Token compression expedites the training and inference of Vision Transformers (ViTs)
However, when applied to downstream tasks, compression degrees are mismatched between training and inference stages.
We propose a model arithmetic framework to decouple the compression degrees between the two stages.
arXiv Detail & Related papers (2024-08-13T10:36:43Z) - Token-level Correlation-guided Compression for Efficient Multimodal Document Understanding [54.532578213126065]
Most document understanding methods preserve all tokens within sub-images and treat them equally.
This neglects their different informativeness and leads to a significant increase in the number of image tokens.
We propose Token-level Correlation-guided Compression, a parameter-free and plug-and-play methodology to optimize token processing.
arXiv Detail & Related papers (2024-07-19T16:11:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.