Efficient Code LLM Training via Distribution-Consistent and Diversity-Aware Data Selection
- URL: http://arxiv.org/abs/2507.02378v1
- Date: Thu, 03 Jul 2025 07:19:56 GMT
- Title: Efficient Code LLM Training via Distribution-Consistent and Diversity-Aware Data Selection
- Authors: Weijie Lyu, Sheng-Jun Huang, Xuan Xia,
- Abstract summary: We introduce an approach that utilizes a parametric model for code data selection, aimed at improving both training efficiency and model performance.<n>Our method achieves gains of 2.4% (HumanEval) and 2.3% (MBPP) over 92K full-sampled baseline, outperforming other sampling approaches in both performance and efficiency.
- Score: 29.647174797769015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in large language models (LLMs) have significantly improved code generation and program comprehension, accelerating the evolution of software engineering. Current methods primarily enhance model performance by leveraging vast amounts of data, focusing on data quantity while often overlooking data quality, thereby reducing training efficiency. To address this, we introduce an approach that utilizes a parametric model for code data selection, aimed at improving both training efficiency and model performance. Our method optimizes the parametric model to ensure distribution consistency and diversity within the selected subset, guaranteeing high-quality data. Experimental results demonstrate that using only 10K samples, our method achieves gains of 2.4% (HumanEval) and 2.3% (MBPP) over 92K full-sampled baseline, outperforming other sampling approaches in both performance and efficiency. This underscores that our method effectively boosts model performance while significantly reducing computational costs.
Related papers
- LEAD: Iterative Data Selection for Efficient LLM Instruction Tuning [22.242445543184264]
We propose LEAD, an efficient iterative data selection framework that accurately estimates sample utility entirely within the standard training loop.<n>Experiments show that LEAD significantly outperforms state-of-the-art methods, improving average model performance by 6.1%-10.8% while using only 2.5% of the training data and reducing overall training time by 5-10x.
arXiv Detail & Related papers (2025-05-12T10:57:51Z) - Data-efficient LLM Fine-tuning for Code Generation [30.441431693349866]
Large language models (LLMs) have demonstrated significant potential in code generation tasks.<n>Existing approaches typically generate large amounts of synthetic data for fine-tuning.<n>We propose a data selection strategy in order to improve the effectiveness and efficiency of training for code-based LLMs.
arXiv Detail & Related papers (2025-04-17T06:29:28Z) - Ultra-Resolution Adaptation with Ease [62.56434979517156]
We propose a set of key guidelines for ultra-resolution adaptation termed emphURAE.<n>We show that tuning minor components of the weight matrices outperforms widely-used low-rank adapters when synthetic data are unavailable.<n>Experiments validate that URAE achieves comparable 2K-generation performance to state-of-the-art closed-source models like FLUX1.1 [Pro] Ultra with only 3K samples and 2K iterations.
arXiv Detail & Related papers (2025-03-20T16:44:43Z) - Clear Preferences Leave Traces: Reference Model-Guided Sampling for Preference Learning [59.11519451499754]
Direct Preference Optimization (DPO) has emerged as a de-facto approach for aligning language models with human preferences.<n>Recent work has shown DPO's effectiveness relies on training data quality.<n>We discover that reference model probability space naturally detects high-quality training samples.
arXiv Detail & Related papers (2025-01-25T07:21:50Z) - Optimizing Pretraining Data Mixtures with LLM-Estimated Utility [52.08428597962423]
Large Language Models improve with increasing amounts of high-quality training data.<n>We find token-counts outperform manual and learned mixes, indicating that simple approaches for dataset size and diversity are surprisingly effective.<n>We propose two complementary approaches: UtiliMax, which extends token-based $200s by incorporating utility estimates from reduced-scale ablations, achieving up to a 10.6x speedup over manual baselines; and Model Estimated Data Utility (MEDU), which leverages LLMs to estimate data utility from small samples, matching ablation-based performance while reducing computational requirements by $simx.
arXiv Detail & Related papers (2025-01-20T21:10:22Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - CodeACT: Code Adaptive Compute-efficient Tuning Framework for Code LLMs [30.441431693349866]
Existing methods generate vast amounts of synthetic data for fine-tuning, leading to inefficiencies in training.
CodeACT introduces the Complexity and Diversity Aware Sampling (CDAS) method to select high-quality training data.
CodeACT achieves an 8.6% performance increase on HumanEval, reduces training time by 78%, and decreases peak GPU memory usage by 27%.
arXiv Detail & Related papers (2024-08-05T02:38:48Z) - Code Less, Align More: Efficient LLM Fine-tuning for Code Generation with Data Pruning [4.975728472540823]
We present techniques that integrate various clustering and pruning metrics to selectively reduce training data without compromising the accuracy and functionality of the generated code.
Our experiments show that these pruning strategies not only reduce the computational resources needed but also enhance the overall quality code generation.
arXiv Detail & Related papers (2024-07-06T10:30:43Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.