論文の概要: PLOT: Pseudo-Labeling via Video Object Tracking for Scalable Monocular 3D Object Detection
- arxiv url: http://arxiv.org/abs/2507.02393v1
- Date: Thu, 03 Jul 2025 07:46:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-04 15:37:15.876318
- Title: PLOT: Pseudo-Labeling via Video Object Tracking for Scalable Monocular 3D Object Detection
- Title(参考訳): PLOT:スケーラブルなモノクロ3次元物体検出のためのビデオオブジェクト追跡による擬似ラベル作成
- Authors: Seokyeong Lee, Sithu Aung, Junyong Choi, Seungryong Kim, Ig-Jae Kim, Junghyun Cho,
- Abstract要約: モノクロ3Dオブジェクト検出(M3OD)は、高アノテーションコストと固有の2Dから3Dの曖昧さに起因するデータの不足により、長年にわたって課題に直面してきた。
ビデオデータのみを使用し、マルチビュー設定、追加センサー、カメラポーズ、ドメイン固有のトレーニングを必要とせず、より堅牢な疑似ラベルフレームワークを提案する。
- 参考スコア(独自算出の注目度): 35.524943073010675
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Monocular 3D object detection (M3OD) has long faced challenges due to data scarcity caused by high annotation costs and inherent 2D-to-3D ambiguity. Although various weakly supervised methods and pseudo-labeling methods have been proposed to address these issues, they are mostly limited by domain-specific learning or rely solely on shape information from a single observation. In this paper, we propose a novel pseudo-labeling framework that uses only video data and is more robust to occlusion, without requiring a multi-view setup, additional sensors, camera poses, or domain-specific training. Specifically, we explore a technique for aggregating the pseudo-LiDARs of both static and dynamic objects across temporally adjacent frames using object point tracking, enabling 3D attribute extraction in scenarios where 3D data acquisition is infeasible. Extensive experiments demonstrate that our method ensures reliable accuracy and strong scalability, making it a practical and effective solution for M3OD.
- Abstract(参考訳): モノクロ3Dオブジェクト検出(M3OD)は、高アノテーションコストと固有の2Dから3Dの曖昧さに起因するデータの不足により、長年にわたって課題に直面してきた。
これらの問題に対処するために、様々な弱い教師付き手法や擬似ラベル法が提案されているが、これらは主にドメイン固有の学習によって制限されているか、1つの観測から得られる形状情報にのみ依存している。
本稿では,映像データのみを使用し,マルチビュー設定,追加センサ,カメラポーズ,ドメイン固有のトレーニングを必要とせず,より強靭な疑似ラベル作成フレームワークを提案する。
具体的には,静的および動的オブジェクトの擬似LiDARをオブジェクト点追跡を用いて時間的に隣接したフレームに集約し,三次元データ取得が不可能なシナリオにおいて3次元属性抽出を可能にする手法について検討する。
大規模な実験により,本手法は信頼性と高いスケーラビリティを保証し,M3ODの実用的かつ効果的な解法であることが示された。
関連論文リスト
- Street Gaussians without 3D Object Tracker [86.62329193275916]
既存の方法は、標準空間における動的オブジェクトを再構築するために、オブジェクトポーズの労働集約的な手動ラベリングに依存している。
本研究では,3次元オブジェクト融合戦略における2次元ディープトラッカーの関連性を利用して,安定なオブジェクト追跡モジュールを提案する。
我々は、軌道誤差を自律的に補正し、見逃した検出を回復する暗黙の特徴空間に、モーションラーニング戦略を導入することで、避けられないトラッキングエラーに対処する。
論文 参考訳(メタデータ) (2024-12-07T05:49:42Z) - STONE: A Submodular Optimization Framework for Active 3D Object Detection [20.54906045954377]
正確な3Dオブジェクト検出器をトレーニングするための鍵となる要件は、大量のLiDARベースのポイントクラウドデータが利用できることである。
本稿では,3次元物体検出装置のトレーニングにおけるラベル付けコストを大幅に削減する,統合されたアクティブな3次元物体検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-04T20:45:33Z) - SOGDet: Semantic-Occupancy Guided Multi-view 3D Object Detection [19.75965521357068]
本稿では,SOGDet(Semantic-Occupancy Guided Multi-view Object Detection)と呼ばれる新しい手法を提案する。
以上の結果から,SOGDet は nuScenes Detection Score (NDS) と平均平均精度 (mAP) の3つのベースライン法の性能を一貫して向上させることがわかった。
これは、3Dオブジェクト検出と3Dセマンティック占有の組み合わせが、3D環境をより包括的に認識し、より堅牢な自律運転システムの構築を支援することを示唆している。
論文 参考訳(メタデータ) (2023-08-26T07:38:21Z) - View-to-Label: Multi-View Consistency for Self-Supervised 3D Object
Detection [46.077668660248534]
本稿では,RGBシーケンスのみから,自己監督型3Dオブジェクト検出を行う手法を提案する。
KITTI 3Dデータセットを用いた実験では,最先端の自己管理手法と同等の性能を示した。
論文 参考訳(メタデータ) (2023-05-29T09:30:39Z) - Weakly Supervised Monocular 3D Object Detection using Multi-View
Projection and Direction Consistency [78.76508318592552]
モノクロ3Dオブジェクト検出は、その容易なアプリケーションのための自動駆動において、主流のアプローチとなっている。
現在のほとんどの方法は、トレーニングフェーズで使用される真実をラベル付けするために、まだ3Dポイントのクラウドデータに依存しています。
画像にマークされた2次元ラベルだけでモデルを訓練できる,弱教師付きモノクル3次元オブジェクト検出法を提案する。
論文 参考訳(メタデータ) (2023-03-15T15:14:00Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
本稿では,3次元オブジェクト検出(CMR3D)フレームワークのためのコンテキスト型マルチステージリファインメントを提案する。
我々のフレームワークは3Dシーンを入力として取り、シーンの有用なコンテキスト情報を明示的に統合しようと試みている。
3Dオブジェクトの検出に加えて,3Dオブジェクトカウント問題に対するフレームワークの有効性について検討する。
論文 参考訳(メタデータ) (2022-09-13T05:26:09Z) - Semi-supervised 3D Object Detection via Adaptive Pseudo-Labeling [18.209409027211404]
3次元物体検出はコンピュータビジョンにおいて重要な課題である。
既存のほとんどのメソッドでは、多くの高品質な3Dアノテーションが必要です。
本研究では,屋外3次元物体検出タスクのための擬似ラベルに基づく新しい半教師付きフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-15T02:58:43Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
特徴アライメントと非対称非局所的注意を有するモノクロ3次元単段物体検出器(M3DSSD)を提案する。
提案したM3DSSDは,KITTIデータセット上のモノラルな3Dオブジェクト検出手法よりも大幅に性能が向上する。
論文 参考訳(メタデータ) (2021-03-24T13:09:11Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
周囲の物体の将来の位置を予測し、自律運転などの多くのアプリケーションで観測者の行動を計画するためには、信頼性と正確な3D追跡フレームワークが不可欠である。
移動プラットフォーム上で撮影された2次元画像のシーケンスから,移動物体を時間とともに効果的に関連付け,その全3次元バウンディングボックス情報を推定するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T15:30:02Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
具体的には、ラベルのない新しい未知のデータに基づくネットワークの一般化を促進するための、徹底的な摂動スキームを設計する。
我々のSESSは、50%のラベル付きデータを用いて、最先端の完全教師付き手法と比較して、競争性能を達成している。
論文 参考訳(メタデータ) (2019-12-26T08:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。